g因子

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動: 案内検索

g因子(ジーいんし、gとも)は粒子や原子核磁気モーメント磁気回転比を特徴づける無次元量の比例定数である。g因子は本質的には粒子の観測される磁気モーメント\muと、それに対応する角運動量量子数と対応する磁気モーメントの量子単位(ボーア磁子核磁子など)を結びつける比の定数である。

特別な場合[編集]

電子のg因子[編集]

電子に関連した磁気モーメントは3つある。スピン角運動量による磁気モーメントと、軌道角運動量による磁気モーメントと、全角運動量(前述の2つの量子力学的な和)による磁気モーメントである。これら3つのモーメントに対するg因子の値は、それぞれ異なっている。

電子スピンのg因子[編集]

3つの中で最も有名なのは、電子スピンのg因子g_Sである。これは単に電子のg因子g_\mathrm{e}と呼ばれることが多い。電子スピンのg因子は以下で定義される。

 \boldsymbol{\mu}_S^\mathrm{CGS}=-g_S \mu_\mathrm{B}\cdot\frac{\boldsymbol{S}}{\hbar}=-\frac{g_Se\boldsymbol{S}}{2m_\mathrm{e}c}

ここで

\boldsymbol{\mu}_Sはスピンから生じる電子の全磁気モーメント
\boldsymbol{S}はスピン角運動量の大きさ
\mu_\mathrm{B}ボーア磁子

よって磁気モーメントのz成分は以下となる。

 \mu_z=-g_S \mu_\mathrm{B} m_s

g_Sの値はおよそ2.002319に等しくなり、非常に高い精度で測定されている[1][2]。電子スピンのg因子の2からのわずかなずれは異常磁気モーメントと呼ばれ、量子電磁力学によって説明される[3]

電子軌道のg因子[編集]

次に、電子軌道のg因子 (electron orbital g-factor) g_Lは以下により定義される。

\boldsymbol{\mu}_L^\mathrm{CGS}=g_L \mu_\mathrm{B}\cdot\frac{\boldsymbol{L}}{\hbar}=\frac{g_Le\boldsymbol{L}}{2m_\mathrm{e}c}

ここで

\boldsymbol{\mu}_Lは軌道角運動量から生じる電子の全磁気モーメント
\boldsymbol{L}は軌道角運動量の大きさ
\mu_\mathrm{B}ボーア磁子

g_Lの値は正確に1に等しくなる。これは古典的な磁気回転比の起源と同様、古典力学の議論により求められる。磁気量子数m_lをもつ軌道の電子において、軌道角運動量のz成分は以下となる。

 \mu_z=g_L \mu_\mathrm{B} m_l

ここでg_L =1であるため、上の\mu_zは丁度\mu_B m_lに等しい。

ランデのg因子[編集]

3つめに、ランデのg因子g_Jは以下で定義される。

 \boldsymbol{\mu}^\mathrm{CGS}=g_J \mu_\mathrm{B}\cdot\frac{\boldsymbol{J}}{\hbar}=\frac{g_Je\boldsymbol{J}}{2m_\mathrm{e}c}

ここで

\boldsymbol{\mu}は電子のスピンと軌道角運動量による全磁気モーメント
\boldsymbol{J} = \boldsymbol{L} + \boldsymbol{S}は全角運動量
\mu_\mathrm{B}ボーア磁子

g_Jの値は量子力学的な変数により、g_Lg_Sの値と結びついている。ランデのg因子を参照。

核子と原子核のg因子[編集]

陽子中性子、そして多くの原子核はスピンと磁気モーメントをもっており、よってそれに関連したg_\mathrm{N}因子を持っている。よく用いられる公式は以下である。

 \boldsymbol{\mu}_\mathrm{N}^\mathrm{CGS}=g_\mathrm{N} \mu_\mathrm{N}\cdot\frac{\boldsymbol{I}}{\hbar}=\frac{g_\mathrm{N}e\boldsymbol{I}}{2m_\mathrm{p}c}

ここで

\boldsymbol{\mu}核スピンによって生じる磁気モーメント、
\boldsymbol{I}は核スピン角運動量、
\mu_\mathrm{N}核磁子

ミュー粒子のg因子[編集]

超対称性が自然界で実現しているならば、ミュー粒子のg-2には補正が加わると考えられている。これは、ミュー粒子のループ図に新しい粒子が関与するためである。補正はこのように図示することができる:ニュートラリーノスミューオンのループ、そしてチャージーノとミュー粒子のスニュートリノのループ。これは標準模型を超えた物理があらわれる現象の一例である。

ミュー粒子も電子のようにスピンに由来するg_\mu因子を持っており、以下の式で与えられる。

 \boldsymbol{\mu}_\mu^\mathrm{CGS}=g_\mu\cdot\frac{e\hbar}{2m_\mu c}\cdot\frac{\boldsymbol{S}}{\hbar}

ここで

\boldsymbol{\mu}はミュー粒子のスピンによる磁気モーメント
\boldsymbol{S}はスピン角運動量
m_\muはミュー粒子の質量。

ミュー粒子のg因子には、標準模型では説明できないズレがある可能性がある。よって主にブルックヘブン国立研究所により非常に精密な測定がおこなわれている。g因子の測定値は2.0023318414で不確かさは0.0000000012であり、一方理論による予言では2.0023318361で不確かさは0.0000000010である[4]。この違いには標準模型を超えた物理が影響している可能性が提唱されている。

g因子の測定値[編集]

素粒子 g因子 標準不確かさ
電子 g_\mathrm{e} 2.002 319 304 3622 0.000 000 000 0015
中性子 g_\mathrm{n} -3.826 085 45 0.000 000 90
陽子 g_\mathrm{p} 5.585 694 701 0.000 000 056
\mu粒子 g_{\mu} 2.002 331 8414 0.000 000 0012
NISTが現在認めているg因子の値[1]

電子のg因子は物理学の中でも最も正確に測定されている値の一つであり、小数点第12位まで不確かさは生じない。

脚注と参照文献[編集]

  1. ^ See CERN courier article
  2. ^ B Odom, D Hanneke, B D'Urso and G Gabrielse (2006). “New measurement of the electron magnetic moment using a one-electron quantum cyclotron”. Physical Review Letters 97 (3): 030801. doi:10.1103/PhysRevLett.97.030801. 
  3. ^ S J Brodsky, V A Franke, J R Hiller, G McCartor, S A Paston and E V Prokhvatilov (2004). “A nonperturbative calculation of the electron's magnetic moment”. Nuclear Physics B 703 (1-2): 333-362. doi:10.1016/j.nuclphysb.2004.10.027. 
  4. ^ Hagiwara, K.; Martin, A. D. and Nomura, Daisuke and Teubner, T. (2006) (subscription required). Improved predictions for g-2 of the muon and alpha(QED)(M(Z)**2). http://arxiv.org/abs/hep-ph/0611102. 

関連項目[編集]