AdS/CFT対応

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動: 案内検索
弦理論
Calabi-Yau-alternate.png


理論物理学では、AdS/CFT対応(−たいおう、anti-de Sitter/conformal field theory correspondence)は、マルダセーナ双対(Maldacena duality)あるいはゲージ/重力双対(gauge/gravity duality)とも呼ばれ、2つの物理理論の種類の間の関係を予言するものである。対応の片側は、共形場理論 (CFT) で、場の量子論で基本粒子を記述するヤン=ミルズ理論(Yang–Mills theory)の類似物を意味し、対応する反対側は、反ド・ジッター空間英語版(AdS)で、量子重力の理論で使われる空間である。この対応は弦理論M-理論のことばで定式化された。

双対性は、弦理論と量子重力の理解の主要な発展の現れである。[1] この理由は、双対性がある境界条件を持つ弦理論の非摂動的英語版(non-perturbative)な定式化であるからであり、注目を浴びている量子重力のアイデアのホログラフィック原理(holographic principle)を最もうまく実現しているからである。ホログラフィック原理は、もともとジェラルド・トフーフト(Gerard 't Hooft)が提唱し、レオナルド・サスカインド(Leonard Susskind)により改善されている。

加えて、強結合英語版の場の量子論の研究への強力なツールを提供している。[2] 双対性の有益さの大半は、強弱双対性から来ている。つまり、場の量子論が強い相互作用である場合に、重力理論の側は弱い相互作用であるので、数学的に取り扱い易くなっている。この事実は、強結合の理論を強弱対称性により数学的に扱い易い弱結合の理論に変換することにより、原子核物理学物性物理学での多くの研究に使われてきている。

AdS/CFT対応は、最初に1997年末、フアン・マルダセナ(Juan Maldacena)により提起された。この対応の重要な面は、スティブン・ガブサー英語版(Steven Gubser)、イーゴル・クレバノフ英語版(Igor Klebanov)、アレクサンドル・ポリヤコフ英語版(Alexander Markovich Polyakov)の論文や、エドワード・ウィッテン(Edward Witten)の論文により、精査された。2010にマルダセーナの論文の引用は 7000 を超え、高エネルギー物理学の分野の最も多く引用される論文となっている。[3]

背景[編集]

量子重力と弦理論[編集]

現在の重力の理解は、アルバート・アインシュタイン(Albert Einstein)の一般相対論に基礎をおいている。[4] 1916年に定式化された一般相対論は、空間と時間、もしくは時空の幾何学のことばで重力を説明する。それは、アイザック・ニュートンジェームズ・マックスウェルのような物理学者により開拓された古典物理学のことばで、定式化される。[5] 重力ではない他の力は、量子力学のフレームワークで説明される。20世紀の前半に多くの物理学者により発展した量子力学は、物理的な現象を確率を基礎とする記述する根底から異なる方法を提供している。[6]

量子重力は、量子力学の原理を使い重力を記述することを目的とする物理学の分野である。現在、量子重力の最も有名なアプローチは弦理論であり[7]、弦理論のモデルは基本粒子を 0次元の点ではなく、1次元の英語版と呼ばれる対象を扱う。AdS/CFT対応では、典型的には、弦理論、もしくはその現代的な拡張であるM-理論から導出された量子重力の理論を考える。[8]

日常の生活の中で、3次元である空間(上下、左右、前後)と 1次元の時間は見慣れている。このように、現代物理学の言葉では、4次元の時空に我々は住んでいるという。[9]弦理論とM-理論の特別な特徴の一つに、これらの理論が数学的な整合性のため、時空に余剰次元を要求することである。弦理論の時空は 10次元であり、M-理論の時空は 11次元である。[10] AdS/CFT対応に現れる量子重力理論は、弦理論やM-理論からコンパクト化として知られている過程により得られる。この過程は、より低い次元を有効理論として持っていて、理論を円の中に余剰次元を巻き上げる過程である。[11]

コンパクト化の標準的なアナロジーは、庭の散水用のホースのような立体的な対象を考える。ホースを充分に離れた所から見る限りは、1次元の長さとしてしか見られないが、しかし、ホースに近づいてみると丸まっている 2次元の太さを持っていることに気がつく。蟻はその上を2次元で動くことができるというわけだ。[12]

場の量子論[編集]

空間と時間へ広がっている電磁場のような物理的対象の量子力学の応用は、場の量子論として知られている。[13] 素粒子物理学では、場の量子論は基本粒子の理解の基礎をなし、基本的な場の励起としてモデル化される。場の量子論は、また準粒子と呼ばれる対象のような粒子のモデル化するため凝縮系物性全体にも使われる。[14]

AdS/CFT対応では、量子重力理論に加えて、共形場理論と呼ばれるある場の量子論の一種を考える。この場の理論は、特別な対称性を持ち、数学的に扱い易いタイプの場の量子論である。[15] この理論は、よく弦理論の脈絡の中で研究され、時空の中を伝播する弦の軌跡としてワールドシート英語版と結びつき、統計力学では、熱力学的臨界点で系をモデル化している。[16]

対応のオーバービュー[編集]

三角形や四角形による双曲平面英語版タイルはり英語版

反ド・ジッター空間の幾何学[編集]

AdS/CFT対応では、弦理論やM-理論を反ド・ジッター空間を背景として考える。このことは、時空の幾何学が反ド・ジッター空間英語版(anti-de Sitter space)と呼ばれる時空での、アインシュタイン方程式真空解英語版の項として記述される。[17]

非常に基本的事項であるが、反ド・ジッター空間での点の間の距離の概念(計量)は、通常のユークリッド幾何学とは異なっている。右の図で示しているディスク英語版(disk)のように見ることができ、双曲空間英語版と密接に関連している。[18] この図は、三角形と四角形によってディスクをタイルはり英語版していることを示している。そこでは、三角形と四角形がみな同じ大きさであり、円の形をした境界が内部のどの点からも無限に離れているような方法で、このディスクの点の間の距離を定義することができる。[19]

3-次元反ド・ジッター空間英語版は、双曲ディスク英語版の積み重ねのようになっていて、一つ一つは、ある時刻の宇宙の状態を表している。その結果現れる時空は、中身の詰まった円柱のように見える。

ここで、双曲ディスクの積み重ねの各々が、ある時刻の宇宙の状態を表していることを想像しよう。結果として出てくる空間は、3次元の反ド・ジッター空間となる。[18] これは中身の詰まった円柱のように見え、どの断面も双曲ディスクのコピーである。時間はこの図の縦軸方向に沿って流れる。この円柱の側面は、AdS/CFT対応で重要な役割を果たす。双曲平面の場合は、任意の内部の点が実際にはこの境界面より無限に離れているような方法で、反ド・ジッター空間は歪んでいる[20]

AdS/CFTのアイデア[編集]

反ド・ジッター空間の重要な性質は、境界(3次元の反ド・ジッター空間の場合には円筒となる)にある。境界の重要な性質の一つは、いづれの点の周りも局所的には、重力のない物理学で使われる時空のモデルであるミンコフスキー空間のように見えることである。[21]

従って、反ド・ジッター空間の境界によって与えられる「時空」の中で補助となる理論を考えることが可能となる。この見方はAdS/CFT対応の出発点であり、反ド・ジッター空間の境界は共形場理論の「時空」と見なすことが可能となることを言っている。この主張は、一つの理論からもう一つの理論に計算を翻訳する「辞書」があるという意味で、共形場理論がバルクである反ド・ジッター空間上の重力理論に等価であるという主張である。一方の理論の実在がもう一方の理論の中に対応する片方を持っている。例えば、重力理論での単独粒子は境界上の理論の粒子のいくつかの集まりに対応しているかもしれない。加えて、この2つの理論に関する予言は、数値的な量としても同一視できるので、2つの粒子が重力理論の中で衝突する確率が 40%であるとすると、境界上の理論でも対応する(粒子の)集まりは 40%の衝突確率を持っている。[22]

ホログラムは、表している対象の 3次元の全ての情報を蓄積している2次元の像で、ここの 2つの像は異なる角度から撮影した同一のホログラムの写真である。

反ド・ジッター空間の境界は、反ド・ジッター空間自体よりも小さな次元を持っていることに注意が必要である。例えば、上に図示した 3次元の例では、境界は 2次元の面である。AdS/CFT対応は、 2つの理論の間の関係が 3次元の対象とそのイメージのホログラムとの間の関係に似ていることから、よく「ホログラフィック対応」として記述される。[23] ホログラムは 2次元ではあるが、表現している対象の 3次元の全ての情報をエンコードしている。同様に、AdS/CFT対応により関連付けられている理論は、次元の数が異なっているにもかかわらず、「正確に」等価であると予想されている。共形場理論は高次元の量子重力理論の情報を持ったホログラムのようである。[19]

対応の例[編集]

マルダセーナの1997年の見方に従い、理論家たちは多くのAdS/CFT対応の実例を発見して来た。これらの実例は、様々な共形場理論を様々な次元の弦理論やM-理論のコンパクト化した理論と関連付けている。ADS/CFT対応で関連づけられた理論は、一般的には、現実の世界を表すモデルではないが、素粒子的性質や高い自由度をもつ性質を持っていて、場の量子論や量子重力の中にある問題を解くために有効に使うことのできる。[24]

最も有名なAdS/CFT対応の例は、積空間 AdS_5\times S^5 の上のタイプIIB弦理論が、4次元境界を持つN=4 超対称ヤン・ミルズ理論(N=4 super Yang–Mills theory)に等価であるという例である。[25] この例の中では、重力理論のある時空は、有効理論として 5次元であり(よって、AdS_5 と書く)、5つの加えられた「コンパクト」な次元(S^5 の因子よりエンコードされている)が存在する。少なくともマクロスコピックには、現実の世界の時空は 4次元であるので、このAdS/CFT対応のバージョンは重力の現実的なモデルを提供はしない。同様に、双対理論は超対称性が数多くあることを前提にしているので、なんら現実世界の系を表すモデルではない。しかし、以下に説明するように、この境界理論は、量子色力学、つまり強い力と共通な様相を示している。この理論は、フェルミオンを持つ量子色力学のグルーオンに似た粒子を記述している。[7] 結果として、原子核物理学、特にクォークグルーオンプラズマの研究に応用が見出されている。[26]

もうひとつのAdS/CFT対応の実例は、AdS_7\times S^4 上のM-理論は、6次元 (2,0)-超共形場理論に等価であろうという例である。[27] この例では、重力理論の時空は、有効理論として 7次元である。双対性の片方に現れる(2,0)-理論は、超共形場理論英語版(superconformal field theory)の分類によって、予言される。この理論は、古典的極限英語版を持たない量子力学の理論であるので、いまだ少ししか理解されていない。[28] この理論を研究することに内在的な困難さがあるが、物理学と数学の双方にとって、様々な理由からこの理論は興味ある対象と考えられている。[29]

さらにもう一つのAdS/CFT対応の実例として、AdS_4\times S^7 上のM-理論と、3次元のABJM超共形場理論が等価であるという例がある。[30] そこでは、重力理論は 4つの非コンパクトな次元を持ち、従って、このAdS/CFT対応のバージョンは重力のより現実的な記述をもたらしている。[31]

量子重力の応用[編集]

弦理論の非摂動的定式化[編集]

量子の世界の相互作用:点粒子の点の世界線、弦理論の閉じた英語版が伝播するときに作る世界面英語版

場の量子論では、摂動論のテクニックを使った様々な物理学的な事象の確率の計算が典型的である。20世紀前半にリチャード・ファインマン(Richard Feynman)やその他の人により開拓された摂動的場の量子論は、ファインマン図形と呼ばれる特別な図形を使用し、計算を体系的に行う。これら図形は、点のような粒子とそれらの相互作用を描いていると想定できる。[32] この定式化は、結果を予言をすることに極めて有用である。にもかかわらず、これらの予言は、相互作用の強さである結合定数が信頼に足りうるに十分小さな場合、単に相互作用のない場合に近いときのみ、有効であるに過ぎない。[33]

弦理論の出発点は、場の量子論の点のような粒子は弦と呼ばれる 1次元の対象としてモデル化することができるというアイデアである。弦の相互作用は、普通の場の量子論で使われる摂動論を一般化することで、直接、定義される。ファインマン図形のレベルで、このことは点粒子の経路を表している 1次元図形を、弦の運動を表現する 2次元の曲面に置き換えることを意味する。場の量子論とは異なり、弦理論はいまだに完全な非摂動的な定義が与えられていないので、物理学者が答えたい多くの理論的な問題が、未解決となっている。[34]

弦理論の非摂動的定式化を開拓する問題は、AdS/CFT対応の研究のもともとの動機の一つであった。[35] 上で説明したように、AdS/CFT対応は、反ド・ジッター空間の上の弦理論に等価な場の量子論の例をいくつか提供する。見方を変えると、重力場が漸近的に反ド・ジッター空間となる特別なとき(重力場が空間の無限遠点で反ド・ジッター空間の場となっている)には、このAdS/CFT対応が、弦理論の定義を与えていると見ることも可能である。弦理論で物理的に興味の対象となる量は、双対な場の量子論の量の項で定義される。[19]

ブラックホール情報パラドックス[編集]

1975年、スティーヴン・ホーキング(Stephen Hawking)は、ブラックホールは完全なブラックホールではなく、事象の地平線の近くの量子効果のため、わずかな輻射が発生していることを示唆する計算結果を発表した。[36] 最初、ホーキングの結果は、ブラックホールが情報を壊してしまうであろうことを示唆したため、理論家に対しては問題の提起となった。さらに詳しくは、ホーキングの計算は、基本的な量子力学の基準英語版(postulates of quantum mechanics)の一つと矛盾するように見えると指摘した。量子力学の基準とは、物理系はシュレディンガー方程式に従って時間発展するというものである。普通は、この性質を時間発展のユニタリ性として理解する。ホーキングの計算と量子力学のユニタリ性の基準の間の一見矛盾に見えることは、ブラックホール情報パラドックスとして知られるようになった。[37]

AdS/CFT対応はすくなくともある程度拡張すれば、ブラックホールの情報パラドックスを解決することが可能となる。なぜならば、AdS/CFT対応の脈絡では、ブラックホールがどのようにして量子力学との整合性をもって発展することが可能かを示すことができるからである。実際、ブラックホールをAdS/CFT対応の脈絡で考えると、ブラックホールは反ド・ジッター空間の境界上の粒子の構成に対応することになる。[38] これらの粒子は普通の量子力学の規則に従って、特にユニタリ性をもって発展するので、ブラックホールは量子力学の原理に照らしユニタリ性保存するはずである。[39] 2005年にホーキングは、パラドックスがAdS/CFT対応により情報を保存する方向に設定したとアナウンスし、ブラックホールは情報を保持するであろう具体的メカニズムを示唆した。[40]

場の量子論への応用[編集]

核物理学[編集]

AdS/CFT対応を使い研究されている一つの物理系英語版は、クォークグルーオンプラズマ(quark-gluon plasma)で、素粒子加速器で生成されるエキゾチックな物質の状態である。この物質の状態は、のような重いイオンが高エネルギーで衝突する短い瞬間に発生する。そのような衝突は、原子核をケルビン温度でおよそ 2\times10^{12} 度で閉じ込めを解く英語版(deconfine)ことで得られる。温度の条件は、ビッグバンの後のおよそ 10^{-11} 秒後の状態に似ている。[41]

クォークグルーオンプラズマの物理は、量子色力学により統制されているが、この理論は数学的には問題を取り扱い易くはない。[42]2005年のダム・ターン・ソン英語版(Đàm Thanh Sơn)と協力者による論文の中では、弦理論のことばの中で表すことで、クォークグルーオンプラズマのいくつかの側面を理解することに、AdS/CFT対応が使われている。[26] しかし、ソンと協力者は、AdS/CFT対応を適用することで、5次元の時空の中のブラックホールのことばでクォークグルーオンプラズマの記述が可能となった。計算はクォークグルーオンプラズマに関連する 2つの量、粘度 \etaエントロピーの体積密度 s の比率が、次のある普遍的な定数に漸近的に等しくなることを示している。

\frac{\eta}{s}\approx\frac{\hbar}{4\pi k}

ここに \hbarプランク定数(Planck's constant)であり、kボルツマン定数(Boltzmann's constant)である。[43] 加えて、これらの著者は、この普遍的定数が系の大きなクラスでは \eta/s下界英語版を与えると予想している。2008年に予言されたクォークグルーオンプラズマの比の値は、ブルックヘブン国立研究所(Brookhaven National Laboratory)の相対論的重イオン衝突器英語版(Relativistic Heavy Ion Collider)により確かめられた。[44]

クォークグルーオンプラズマのもう一つ別の重要な性質として、プラズマの中を動く非常に高いエネルギーのクォークは、たった数フェムトメーター英語版(10-15m)動いた後に止まったり、「折れ曲がったり(quenched)」したりする。この現象はジェットクエンチング英語版パラメータと呼ばれる数値 \widehat{q} により特徴付けられる。ジェットクエンチングパラメータは、プラズマを通って動く距離の二乗に、クォークの失うエネルギーが関係付いていることを示している。AdS/CFT対応に基づく計算は、理論家が \widehat{q} の値を見積もることを可能とし、その結果がこのパラメータにほぼ一致していることが分かり、この現象のより深い理解のために、AdS/CFT対応が有益であることを明らかにしている。[45]

凝縮系物性[編集]

室温超伝導での磁石マイスナー効果。今日、AdS/CFT対応を使い高温超電導を理解しようとしている物理学者もいる。[46]

何十年にもわたり、物理的な凝縮系物性の物理学者は、数多くの超伝導超流動といったエキゾチックな物質の状態を発見してきた。これらの状態は、場の量子論の定式化を使い記述されるが、標準的な場の理論のテクニックを使っては説明することが困難な現象もある。スビル・サチデフ英語版といった凝縮系物性の物理学者は、AdS/CFT対応が弦理論のことばでこれらの系の記述を可能にすることができ、さらにそれらの振る舞いをより深く研究することができると期待している。[47]

これまで弦理論の方法を使い、超流動から絶縁体への転換の記述することに成功した。超流動は、全く摩擦を持たない電気的に修正な原子の系である。そのような系は、液体ヘリウムを使った実験室内でしばしば生成されるが、最近、実験家たちは交叉するレーザーの格子の中へ冷却された原子を大量に注ぎ込むことにより、人工的に超流動を作り出す新しい方法を開発した。これらの原子は、超流動の振る舞いをするが、レーザーの強さを強くするに従い、動きが鈍くなり、突然絶縁体の状態へと変わる。この変換の間に、原子は普通の振る舞いをする。例えば、原子はプランク定数や温度とは独立な量子力学のパラメータのレートの半分まで遅くなる。このパラメータは、他の相 (物質)の記述には現れない。この振る舞いは、最近、流動の性質が高次元のブラックホールの言葉で記述される双対な記述を考えることにより理解された。[48]

批判[編集]

多くの物理学者が核物理学や凝縮系物性物理学の分野で弦理論をベースとした方法へと転換していく中、物理学者の中には、現実世界の物理系の信頼に足るモデルを、AdS/CFT対応が提供しているとすることに疑問を呈する理論家もいる。2006年のクォーク物質のコンファレンスのトークの中[49] で、ラリー・マックラーレン(Larry McLarren)は、AdS/CFT対応に現れる N=4 超対称ヤン・ミルズ理論は、量子色力学とは重要な違いがあるので、核物理学にこれらの方法を適用することには大きな困難があると指摘した。マックラーレンに従えば、

N=4 超対称性を持つヤン・ミルズ場はQCDではない … この理論は、無質量なスケールを持ち、共形不変である。また、閉じ込めもなければ、結合定数もなく、超対称性を持っている。この理論はカイラル対称性の破れを持たないか、もしくは質量が生成されている。6つのスカラーとフェルミオンを随伴表現の中にもっている。 … この理論は、上記問題の全てまたはいくつかを修正することが可能かもしれないが、不適当な対象があるかもしれない。共通認識も得られていないし、N=4 超対称ヤン・ミルズ理論が信頼に足るQCDを反映しているという確証のある現象や 6つの予想について議論すべきものもない。[49]

Physics Todayのレターの中で、ノーベル賞受賞者であるフィリップ・アンダーソン(Philip Anderson)はAdS/CFTの凝縮系物性への応用の類似性に対し、次のようにコメントしている。

凝縮系物性論へのAdS/CFTアプローチの一般的な問題として、(AdS/CFTの)証拠となるべき最初の「CFT」-共形場理論の問題を指摘することができる。一般に、凝縮系物性の問題は、相対論的でもなければ、共形性を持っているわけではない。量子的臨界点の近くでは、時間も空間も双方スケーリングされるが、未だに座標系を選ぶことを行い、普通は格子を選ぶことさえある。ある奇妙なモデル、このモデルを特別視するのは結構だが、この場合には凝縮系物性の問題は実験的な事実により過剰決定系になっていて、他の線型-T 相の証拠がある。[50]

歴史と発展[編集]

ジェラルド・トフーフト英語版(Gerard 't Hooft)は、1970年代に弦理論核物理学の間の類似性を研究することで、AdS/CFT対応に関連する結果を得ていた。

弦理論と核物理学[編集]

1997年の末のAdS/CFT対応の発見は、弦理論と核物理学を関連付ける努力の長い歴史の頂点であった。[51] 事実、弦理論は本来、1960年代の末から1970年代の初めにかけての間は、陽子中性子が互いに強い力で結びつけられているような亜原子粒子(subatomic particle)やハドロンの理論として研究されていた。アイデアは、これらの粒子の各々が弦の異なる振動モードとみなすことができることである。1960年代末、実験家は、角運動量に比例するエネルギーの二乗のレッジェ軌跡英語版(Regge trajectories)と呼ばれる族にハドロンが落ちることを発見し、この関係が回転する相対論的な弦の物理から自然にでてくることに気付いた。[52]


他方、弦としてハドロンをモデル化しようとする試みは、深刻な問題に直面した。一つの問題は、弦理論が無質量スピン 2の粒子を持っているのに対し、そのような粒子はハドロンの物理には現れないことであった。[51] そのような粒子は重力の持つ性質を媒介にするのではないか。1974年にジョエル・シャーク英語版(Joel Scherk)とジョン・シュワルツ(John Schwarz)は、弦理論は核物理学の理論ではなく、多くの理論家が考えるように量子重力に変わるべきものではないかと示唆した。[53] 同じ頃、ハドロンは実際、クォークからできているいることが発見され、量子色力学の方向性が選択されたため、弦理論のアプローチは捨てられてしまった。[51]

量子色力学では、クォークは色電荷英語版と呼ばれる 3種類の電荷の一種を持っている。1974年の論文で、ジェラルド・トフーフト(Gerard 't Hooft)は量子色力学に似た理論を考えることにより別の観点より、弦理論と核物理学の間の関係を研究した。そこでは、色の数は 3でななく、ある任意の数 N である。この論文で、トフーフトは N が無限大となるような極限を考え、この極限では、場の量子論の計算が弦理論の計算に似ていることを議論した。[54]

スティーブン・ホーキング(Stephen Hawking)は1975年にブラックホールは量子効果によりホーキング輻射し蒸発することを提示した。

ブラックホールとホログラフィー[編集]

1975年、スティーブン・ホーキング(Stephen Hawking)は、ブラックホールは完全な黒色ではなく、事象の地平線の近くの量子効果により、かすかに輻射していることを示唆した。[36] この論文は、続くヤコブ・ベッケンシュタイン(Jacob Bekenstein)の論文に拡張され、彼はブラックホールが定義可能なエントロピーを持つことを示唆した。[55] 最初、ホーキングの結果は、主要な量子力学の基準の一つである時間発展のユニタリ性に矛盾するように見えた。直感的には、ユニタリ性の規則は、ある状態から他の状態へ発展するとき、量子力学系が情報を壊すことはないということである。この理由から、一見、矛盾に見えることは「ブラックホール情報パラドックス」として知られるようになった。[56]

マルダセーナの論文[編集]

1997年末、ジュアン・マルダセーナ(Juan Maldacena)は、AdS/CFTの研究を最初となる記念碑的な論文を出版した。[57] アレクサンドル・ポリヤコフ英語版(Alexander Polyakov)によれば、「マルダセーナの仕事は、血の扉を開いた」と言っている。[58] 予想は直ちに、弦理論の学会で非常な興味を呼び起こし[39]スティーブン・ガブサー英語版(Steven Gubser)、イーゴル・クレバノフ英語版(Igor Klebanov)、ポリヤコフによる論文[59] や、エドワード・ウィッテン(Edward Witten)による論文[60] でさらに研究された。これらの論文はマルダセーナの予想と反ド・ジッター空間の境界に現れる共形場理論を、さらに詳しく研究した。[58]

ジュアン・マルダセーナ英語版(Juan Maldacena)は1997年末にAdS/CFT対応を初めて提案した。

マルダセーナの提案の中で一つの特別な場合は、N=4 超対称ヤン・ミルズ理論、量子色力学とある意味で似ているゲージ理論が、5次元の反ド・ジッター空間の中の弦理論に等価であることを言っている。[30] この結果は、早い段階のトフーフト('t Hooft)の弦理論と量子色力学の間の関係についての仕事を評価する助けとなった。核物理学の理論として、弦理論を理論の根底に置くこととなった。[52] マルダセーナの結果はまた、量子重力とブラックホール物理学で重要な意味を持つホログラフィック原理を具体的に実現することを提供した。[1] 2010年頃に、マルダセーナの論文は、高エネルギー物理学での引用が7000を超える最も高い引用率に達している。[3] これらの論文は、数学的に厳密な証明英語版には程遠いが、AdS/CFT対応が正しいことの適切な証拠を与えている。[39]

AdS/CFTの応用[編集]

1999年、コロンビア大学(Columbia University)で仕事を終えた後、核物理学者のダム・ターン・ソン(Đàm Thanh Sơn)は、アンドレイ・スターネッツ(Andrei Starinets)を訪問した。スターネッツはソンの友人で、彼が大学院生のときにニューヨーク大学(New York University)で弦理論のポスドクであった。[61] 二人は最初は協力する意思があったわけではなかったが、ソンは直ちにスターネッツのやっていたAdS/CFTの計算が、重いイオンを高エネルギーで衝突させるときに生成されるクォークグルーオンプラズマのエキゾチックな物質の状態(超流動性(超低粘性))の計算に使えることに気付いた。スターネッツとパベル・コブタン(Pavel Kovtun)の協力の下、ソンはAdS/CFT対応を使い、プラズマのキーとなるパラメータの計算をすることができた。[26] ソンは後日、「プラズマの粘度の値の予想を与えてくれる、理論上の計算をもたらした。...私の核物理学の友人は、ジョークで弦理論から出てきた初めての有益な論文だねえと言っている。"[47]

今日、物理学者はAdS/CFT対応の応用を場の量子論の中に探し続けている。[62] ソンと協力者たちにより開拓された核物理学への応用に加えて、サビル・サチデフ(Subir Sachdev)のような凝縮系物性の物理学者が、弦理論の方法を使い、凝縮系物性のある側面を理解しようとしている。この方向の重要な結果は、AdS/CFT対応を通した超流動の絶縁体への遷移の記述である。[48] 他に現れている主題は、流体/重力対応で、AdS/CFT対応を用いて流体力学の問題を一般相対論の問題へ翻訳することである。[63]

一般化[編集]

3次元重力[編集]

4次元宇宙の重力の量子的側面をより良く理解するために、より低い次元の数理モデルを考えた物理学者もいる。そこでは時空は単に 2次元の空間次元と 1次元の時間を持っている。[64] この設定では、重力場を表す数学は、劇的に単純化されていて、量子重力を場の量子論から来る似た方法を使い研究することができる。弦理論の必要性もないし、4次元の量子重力への根底的なアプローチが可能と考えられている。[65]

ブラウン(J.D. Brown)とマーク・ヘナー英語版(Marc Henneaux)の1986年の仕事に始まり[66]、物理学者たちは、3次元の量子重力理論が密接に 2次元の共形場理論に関連していることを認識していた。1995年にヘナーは彼の協力者と、この関係をさらに詳細に開拓して、反ド・ジッター空間の 3次元重力はリウヴィル場理論として知られる共形場理論に等価であることを示唆した。[67] エドワード・ウィッテン(Edward Witten)により定式化された別の予想は、反ド・ジッター空間の 3次元重力は、モンスター群の対称性を持つ共形場理論に等価であるとしている。[68] これらの予想は、弦理論やM-理論の全てを道具立てを使わないAdS/CFT対応の例を提供する。[69]

dS/CFT対応[編集]

宇宙は加速度的なレートで膨張していることが今日知られているので、現実の宇宙とは異なり、反ド・ジッター空間は膨張もしなければ収縮もしない。代わりに全ての時間で同じに見える。[18] さらにテクニカルなことばを使うと、反ド・ジッター空間は負の宇宙定数を持った宇宙に対応しているのに対し、現実の宇宙は小さな正の宇宙定数を持っている。[70]

短かな居地での重力の性質は、宇宙定数の値とはいくらか独立であるが[71]、正の宇宙定数に対するAdS/CFTのバージョンが求められている。2001年アンドリュー・ストロミンジャー英語版(Andrew Strominger)は、dS/CFT対応英語版(dS/CFT correspondence)と呼ばれる双対のバージョンを導入した。[72] この双対性は、正の宇宙定数を持ったド・ジッター空間英語版(de Sitter space)のモデルを意味する。多くの天文学者は非常に初期の宇宙はド・ジッター空間に近かったと信じているので、天文学の観点からはその双対性は非常に興味を持たれている。[18] 我々の宇宙は、また、遠い将来はド・ジッター空間に似ているかもしれない。[18]

Kerr/CFT対応[編集]

AdS/CFT対応は良くブラックホールの研究に有益であり[73]、AdS/CFTの脈絡で考えたブラックホールのほとんどが、非物理的である。実際、上記で説明したように、AdS/CFT対応のほとんどのバージョンが、非物理的な超対称性をもつ時空の高次元のモデルである。

2009年、モニカ・グイカ(Monica Guica)、トーマス・ハートマン(Thomas Hartman)、ウェイ・ソン(Wei Song)とアンドリュー・ストロミンジャー(Andrew Strominger)は、にもかかわらず、AdS/CFTの考えがある天文学的なブラックホールの理解に役立つことを示した。さらに詳しく言うと、彼らの結果を臨界ブラックホールカーブラックホールにより近似されるブラックホールへ適用できる。臨界カーブラックホールは、与えられた質量と整合性を持つ限りの最大の角運動量を持つ。[74] 彼らは、そのようなブラックホールが共形場理論の言葉での記述と等価な記述持っている。Kerr/CFT対応は、後日、小さな角運動量を持つブラックホールへ(この大きな角運動量を持つブラックホールの理論を)拡張したものである。[75]

高次スピンゲージ理論[編集]

AdS/CFT対応は、イーゴル・クレバノフ(Igor Klebanov)とアレクサンドル・ポリヤコフ(Alexander Markovich Polyakov)の2002年の論文によって予想された別の双対性に密接に関連している。[76] この双対性は、ある反ド・ジッター空間の上の「高次スピンゲージ理論」が、O(N)英語版対称性を持つ共形場理論と等価であるというものである。ここで、バルクの理論は、任意の高次スピンの粒子を記述しているゲージ理論の一種である。この理論は弦理論に似ていて、そこでは振動する弦の励起モードが高次のスピンを持つ粒子に対応していて、AdS/CFT対応と対応の証明英語版が、弦理論バージョンのよりよい理解の助けになるかもしれない。[77] 2010年、シモン・ギオンビ(Simone Giombi)とジー・イン(Xi Yin)は、3点函数(three-point functions)と呼ばれる量を計算することにより、この双対のさらなる証拠を得た。[78]

関連項目[編集]

脚注[編集]

  1. ^ a b De Haro et al. 2013, p.2
  2. ^ Klebanov and Maldacena 2009
  3. ^ a b Top Cited Articles during 2010 in hep-th”. 2013年7月25日閲覧。
  4. ^ 一般相対論の標準的教科書は、1984年のワルド(Wald)の教科書がある。
  5. ^ Maldacena 2005, p.58
  6. ^ Griffiths 2004
  7. ^ a b Maldacena 2005, p.62
  8. ^ タイトルを「対応の例」としたサブセクションを参照のこと。弦理論やM-理論から導出されたことを意味しない例は、「一般化」というタイトルのセクションを参照のこと。
  9. ^ Wald 1984, p. 4
  10. ^ Zwieback 2009, p.8
  11. ^ Zwiebach 2009, pp. 7–8
  12. ^ このアナロジーはGreene 2000, p.186で、例として使われている。
  13. ^ 標準的な教科書としては、ぺスキン(Peskin)とシュレーダー(Schroeder)の1995年の教科書がある。
  14. ^ 場の量子論の凝縮系物性への応用の入門書は、Zee 2010 を参照のこと。
  15. ^ 共形場の理論は共形変換不変な理論として特徴づけられる。
  16. ^ この理論の摂動的な弦理論への応用を強調した共形場理論の入門は、Volume II of Deligne et al. 1999 を参照のこと。
  17. ^ Klebanov と Maldacena 2009, p.28
  18. ^ a b c d e Maldacena 2005, p.60
  19. ^ a b c Maldacena 2005, p. 61
  20. ^ 反ド・ジッター空間の内部と境界の数学的関係は、チャールズ・フェファーマン(Charles Fefferman)とロビン・グラハム(Robin Graham)の周囲の構成英語版(ambient construction)に記載されている。詳しくは、フェファーマン(Fefferman)とグラハム(Graham) 1985を参照のこと。
  21. ^ Zwiebach 2009, p.552
  22. ^ Maldacena 2005, pp. 61–62
  23. ^ Maldacena 2005, p. 57
  24. ^ AdS/CFTの知られている実例は、典型的には、時空の次元が非物理的な数であったり、非物理的な超対称性を持っていたりする。
  25. ^ この例は、AdS/CFTの 3つのパイオニア的な論文である マルダセーナ(Maldacena)、ガブサー(Gubser)、クレバノフ(Klebanov)の1998年の論文、ポリヤコフ(Polyakov)の1998年の論文やウィッテンの1998年の論文の主要なテーマになっている。
  26. ^ a b c Merali 2011, p. 303; Kovtun, Son, and Starinets 2001
  27. ^ Maldacena 1998
  28. ^ (2,0)-理論のレビューとしては、ムーア(Moore) 2012を参照のこと。
  29. ^ See Moore 2012 and Alday, Gaiotto, and Tachikawa 2010.
  30. ^ a b Aharony et al. 2008
  31. ^ Aharony et al. 2008, sec.1
  32. ^ ファインマン図形の定式化を導入する標準的な教科書は、1995年のぺスキン(Peskin)とシュレーダー(Schroeder)のものがある。
  33. ^ Zee 2010, p. 43
  34. ^ Zwiebach 2009, p.12
  35. ^ Maldacena 1998, sec. 6
  36. ^ a b Hawking 1975
  37. ^ ブラックホール情報パラドックスと関連するホーキングとレオナルド・サスカインドの科学論争の入手できる入門書は、サスカインドの2008を参照のこと。
  38. ^ Zwiebach 2009, p.554
  39. ^ a b c Maldacena 2005, p.63
  40. ^ Hawking 2005
  41. ^ Zwiebach 2009, p.559
  42. ^ さらに詳しく言えば、摂動的な場の量子論の方法が適用できない。
  43. ^ Zwiebach 2009, p.561; Kovtun, Son, and Starinets 2001
  44. ^ Merali 2011, p.303; Luzum and Romatschke 2008
  45. ^ Zwiebach 2009, p.561
  46. ^ Merali 2011
  47. ^ a b Merali 2011, p.303
  48. ^ a b Sachdev 2013, p. 51
  49. ^ a b McLerran 2007
  50. ^ Strange connections to strange metals”. Physics Today. 2013年8月14日閲覧。
  51. ^ a b c Zwiebach 2009, p. 525
  52. ^ a b Aharony et al. 2008, sec. 1.1
  53. ^ Scherk and Schwarz 1974
  54. ^ 'T Hooft 1974
  55. ^ Bekenstein 1973
  56. ^ Susskind 2008
  57. ^ Maldacena_a
  58. ^ a b Polyakov 2008, p.6
  59. ^ Gubser, Klebanov, and Polyakov 1998
  60. ^ Witten 1998
  61. ^ Merali 2011, pp.302-303
  62. ^ Merali 2011; Sachdev 2013
  63. ^ Rangamani 2009
  64. ^ レビューとして、カーリップ(Carlip) 2003.
  65. ^ ウィッテンの1988年の論文に従うと、3次元の量子重力理論は、チャーン・サイモンズ理論と関連付けることで理解することができる。
  66. ^ Brown and Henneaux 1986
  67. ^ Coussaert, Henneaux, and van Driel 1995
  68. ^ Witten 2007
  69. ^ Guica et al. 2009, p. 1
  70. ^ Perlmutter 2003
  71. ^ Biquard 2005, p.33
  72. ^ Strominger 2001
  73. ^ ブラックホール情報パラドックスと題のサブセクションを参照のこと。
  74. ^ Guica et al. 2009
  75. ^ Castro, Maloney, and Strominger 2010
  76. ^ Klebanov and Polyakov 2002
  77. ^ クレバノフ(Klebanov)とポリヤコフ(Polyakov) 2002の導入部を参照のこと。
  78. ^ Giombi and Yin 2010

参考文献[編集]

  • Biquard, Olivier (2005). “AdS/CFT Correspondence: Einstein Metrics and Their Conformal Boundaries”. European Mathematical Society. ISBN 978-3-03719-013-5 
  • Brown, J. David; Henneaux, Marc (1986). “Central charges in the canonical realization of asymptotic symmetries: an example from three dimensional gravity”. Communications in Mathematical Physics 104 (2): 207–226. Bibcode 1986CMaPh.104..207B. doi:10.1007/BF01211590. 
  • Carlip, Steven (2003). Quantum Gravity in 2+1 Dimensions. Cambridge Monographs on Mathematical Physics. ISBN 978-0-521-54588-4. 
  • Deligne, Pierre; Etingof, Pavel; Freed, Daniel et al., eds (1999). Quantum Fields and Strings: A Course for Mathematicians. American Mathematical Society. ISBN 978-0-8218-2014-8. 
  • Fefferman, Charles; Graham, Robin (1985). “Conformal invariants”. Asterisque: 95–116. 
  • Fefferman, Charles; Graham, Robin (2011). The Ambient Metric. Princeton University Press. ISBN 978-1-4008-4058-8. 
  • Greene, Brian (2000). The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory. Random House. ISBN 978-0-9650888-0-0. 
  • Griffiths, David (2004). Introduction to Quantum Mechanics. Pearson Prentice Hall. ISBN 978-0-13-111892-8. 
  • Peskin, Michael; Schroeder, Daniel (1995). An Introduction to Quantum Field Theory. Westview Press. ISBN 978-0-201-50397-5. 
  • Susskind, Leonard (2008). The Black Hole War: My Battle with Stephen Hawking to Make the World Safe for Quantum Mechanics. Little, Brown and Company. ISBN 978-0-316-01641-4. 
  • 't Hooft, Gerard (1993年). “Dimensional Reduction in Quantum Gravity”. arXiv:gr-qc/9310026. 
  • Zee, Anthony (2010). Quantum Field Theory in a Nutshell (2nd ed.). Princeton University Press. ISBN 978-0-691-14034-6. 
  • Zwiebach, Barton (2009). A First Course in String Theory. Cambridge University Press. ISBN 978-0-521-88032-9. 
  • 誠, 夏梅 (2012). 超弦理論の応用 物理諸分野でのAdS/CFT双対性の使い方. サイエンス社.