逆双曲線関数

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動: 案内検索
関数 artanh のグラフ

逆双曲線関数(ぎゃくそうきょくせんかんすう、英語: inverse hyperbolic functions)は、数学において与えられた双曲線関数の値に対応して双曲角英語版を与える関数。双曲角の大きさは双曲線 x y = 1に対応する双曲的扇形英語版面積に等しく、単位円扇形の面積は対応する中心角2分の1 である。一部の研究者は逆双曲線関数のことを、双曲角を明確に理解するため「面積関数」(英語: area function)と呼ぶ。

逆双曲線関数を表す略記法 arsinharcosh とは異なる略記法としてarcsinharccosh などが、本来誤表記であるにも関わらす良く使用されるのだが、接頭辞arcarcus)の省略形であり、接頭辞ararea の省略形である[1][2][3]。argsinh, argcosh, argtanhなどの表記を好んで用いる研究者もいる。計算機科学の分野では、しばしばasinh という省略形を用いる。累乗を表す上付き文字−1と誤解しないように注意を払う必要があるという事実にもかかわらず、sinh−1(x), cosh−1(x), などの略記も用いられる。また、cosh−1(x)cosh(x)−1は似て非なるものである。

対数表現[編集]

演算子複素数平面で次のように定義される。


  \begin{align}
    \operatorname{arsinh}\, z &= \ln(z + \sqrt{z^2 + 1} \,)
    \\[2.5ex]
    \operatorname{arcosh}\, z &= \ln(z + \sqrt{z+1} \sqrt{z-1} \,)
    \\[1.5ex]
    \operatorname{artanh}\, z &= \tfrac12\ln\left(\frac{1+z}{1-z}\right)
    \\
    \operatorname{arcoth}\, z &= \tfrac12\ln\left(\frac{z+1}{z-1}\right)
    \\
    \operatorname{arcsch}\, z &= \ln\left( \frac{1}{z} + \sqrt{ \frac{1}{z^2} +1 } \,\right)
    \\
    \operatorname{arsech}\, z &= \ln\left( \frac{1}{z} + \sqrt{ \frac{1}{z} + 1 } \, \sqrt{ \frac{1}{z} -1 } \,\right)
  \end{align}

上記の平方根は正の平方根であり、対数関数複素対数英語版である。実数の引数、例えばz = xは実数値を返すが、一定の簡素化を行うことが可能であり、例えば \sqrt{x+1}\sqrt{x-1}=\sqrt{x^2-1}は正の平方根を使うとき、一般に真ではない。

Square representing central portion of the complex z-plane painted in psychedelic colours
\operatorname{arsinh}(z)
Square representing central portion of the complex z-plane painted in psychedelic colours
\operatorname{arcosh}(z)
Square representing central portion of the complex z-plane painted in psychedelic colours
\operatorname{artanh}(z)
Square representing central portion of the complex z-plane painted in psychedelic colours
\operatorname{arcoth}(z)
Square representing central portion of the complex z-plane painted in psychedelic colours
\operatorname{arsech}(z)
Square representing central portion of the complex z-plane painted in psychedelic colours
\operatorname{arcsch}(z)
z平面(複素数平面)における逆双曲線関数:平面における各点の色はその点における関数の複素数を表す。

級数展開[編集]

上記の関数は次のように級数展開できる。

\begin{align}\operatorname{arsinh}\, x & = x - \left( \frac {1} {2} \right) \frac {x^3} {3} + \left( \frac {1 \cdot 3} {2 \cdot 4} \right) \frac {x^5} {5} - \left( \frac {1 \cdot 3 \cdot 5} {2 \cdot 4 \cdot 6} \right) \frac {x^7} {7} +\cdots \\
                       & = \sum_{n=0}^\infty \left( \frac {(-1)^n(2n)!} {2^{2n}(n!)^2} \right) \frac {x^{2n+1}} {(2n+1)} , \qquad \left| x \right| < 1  \end{align}
\begin{align}\operatorname{arcosh}\, x & = \ln 2x - \left( \left( \frac {1} {2} \right) \frac {x^{-2}} {2} + \left( \frac {1 \cdot 3} {2 \cdot 4} \right) \frac {x^{-4}} {4} + \left( \frac {1 \cdot 3 \cdot 5} {2 \cdot 4 \cdot 6} \right) \frac {x^{-6}} {6} +\cdots \right) \\
                      & = \ln 2x - \sum_{n=1}^\infty \left( \frac {(2n)!} {2^{2n}(n!)^2} \right) \frac {x^{-2n}} {(2n)} , \qquad x > 1 \end{align}
\begin{align}\operatorname{artanh}\, x & = x + \frac {x^3} {3} + \frac {x^5} {5} + \frac {x^7} {7} +\cdots \\
                      & = \sum_{n=0}^\infty \frac {x^{2n+1}} {(2n+1)} , \qquad \left| x \right| < 1 \end{align}
\begin{align}\operatorname{arcsch}\, x = \operatorname{arsinh} \frac1x & = x^{-1} - \left( \frac {1} {2} \right) \frac {x^{-3}} {3} + \left( \frac {1 \cdot 3} {2 \cdot 4} \right) \frac {x^{-5}} {5} - \left( \frac {1 \cdot 3 \cdot 5} {2 \cdot 4 \cdot 6} \right) \frac {x^{-7}} {7} +\cdots \\
                      & = \sum_{n=0}^\infty \left( \frac {(-1)^n(2n)!} {2^{2n}(n!)^2} \right) \frac {x^{-(2n+1)}} {(2n+1)} , \qquad \left| x \right| > 1 \end{align}
\begin{align}\operatorname{arsech}\, x = \operatorname{arcosh} \frac1x & = \ln \frac{2}{x} - \left( \left( \frac {1} {2} \right) \frac {x^{2}} {2} + \left( \frac {1 \cdot 3} {2 \cdot 4} \right) \frac {x^{4}} {4} + \left( \frac {1 \cdot 3 \cdot 5} {2 \cdot 4 \cdot 6} \right) \frac {x^{6}} {6} +\cdots \right) \\
                      & = \ln \frac{2}{x} - \sum_{n=1}^\infty \left( \frac {(2n)!} {2^{2n}(n!)^2} \right) \frac {x^{2n}} {2n} , \qquad 0 < x \le 1 \end{align}
\begin{align}\operatorname{arcoth}\, x = \operatorname{artanh} \frac1x & = x^{-1} + \frac {x^{-3}} {3} + \frac {x^{-5}} {5} + \frac {x^{-7}} {7} +\cdots \\
                      & = \sum_{n=0}^\infty \frac {x^{-(2n+1)}} {(2n+1)} , \qquad \left| x \right| > 1 \end{align}

arsinh x に対する漸近展開は次の式で与えられる。

\operatorname{arsinh}\, x = \ln 2x + \sum\limits_{n = 1}^\infty  {\left( { - 1} \right)^{n - 1} \frac{{\left( {2n - 1} \right)!!}}{{2n\left( {2n} \right)!!}}} \frac{1}{{x^{2n} }}

導関数[編集]


\begin{align}
\frac{d}{dx} \operatorname{arsinh}\, x & {}= \frac{1}{\sqrt{1+x^2}}\\
\frac{d}{dx} \operatorname{arcosh}\, x & {}= \frac{1}{\sqrt{x^2-1}}\\
\frac{d}{dx} \operatorname{artanh}\, x & {}= \frac{1}{1-x^2}\\
\frac{d}{dx} \operatorname{arcoth}\, x & {}= \frac{1}{1-x^2}\\
\frac{d}{dx} \operatorname{arsech}\, x & {}= \frac{-1}{x(x+1)\,\sqrt{\frac{1-x}{1+x}}}\\
\frac{d}{dx} \operatorname{arcsch}\, x & {}= \frac{-1}{x^2\,\sqrt{1+\frac{1}{x^2}}}\\
\end{align}

実数xに対して、


\begin{align}
\frac{d}{dx} \operatorname{arsech}\, x & {}= \frac{\mp 1}{x\,\sqrt{1-x^2}}; \qquad \Re\{x\} \gtrless 0\\
\frac{d}{dx} \operatorname{arcsch}\, x & {}= \frac{\mp 1}{x\,\sqrt{1+x^2}}; \qquad \Re\{x\} \gtrless 0
\end{align}

微分法の例:θ = arsinh xとおくと、

\frac{d\,\operatorname{arsinh}\, x}{dx} = \frac{d \theta}{d \sinh \theta} = \frac{1} {\cosh \theta} = \frac{1} {\sqrt{1+\sinh^2 \theta}} = \frac{1}{\sqrt{1+x^2}}

双曲線関数と逆双曲線関数の合成[編集]

\begin{align}
 &\sinh(\operatorname{arcosh}\,x) = \sqrt{x^{2} - 1}  \quad \text{for} \quad |x| > 1 \\
 &\sinh(\operatorname{artanh}\,x) = \frac{x}{\sqrt{1-x^{2}}} \quad \text{for} \quad -1 < x < 1 \\
 &\cosh(\operatorname{arsinh}\,x) = \sqrt{1+x^{2}} \\
 &\cosh(\operatorname{artanh}\,x) = \frac{1}{\sqrt{1-x^{2}}} \quad \text{for} \quad -1 < x < 1 \\
 &\tanh(\operatorname{arsinh}\,x) = \frac{x}{\sqrt{1+x^{2}}} \\
 &\tanh(\operatorname{arcosh}\,x) = \frac{\sqrt{x^{2} - 1}}{x} \quad \text{for} \quad |x| > 1
\end{align}

加法公式[編集]

\operatorname{arsinh} \;u \pm \operatorname{arsinh} \;v = \operatorname{arsinh} \left(u \sqrt{1 + v^2} \pm v \sqrt{1 + u^2}\right)
\operatorname{arcosh} \;u \pm \operatorname{arcosh} \;v = \operatorname{arcosh} \left(u v \pm \sqrt{(u^2 - 1) (v^2 - 1)}\right)
\operatorname{artanh} \;u \pm \operatorname{artanh} \;v = \operatorname{artanh} \left( \frac{u \pm v}{1 \pm uv} \right)
\begin{align}\operatorname{arsinh} \;u + \operatorname{arcosh} \;v & = \operatorname{arsinh} \left(u v + \sqrt{(1 + u^2) (v^2 - 1)}\right) \\
                                                                          & = \operatorname{arcosh} \left(v \sqrt{1 + u^2} + u \sqrt{v^2 - 1}\right) \end{align}

逆双曲線関数の恒等式[編集]


\begin{align}
\operatorname{arcosh}(2x^2-1)=2\operatorname{arcosh}(x)           \quad\quad \hbox{ for }x\geq 1 \\
\operatorname{arcosh}(8x^4-8x^2+1)=4\operatorname{arcosh}(x)      \quad\quad \hbox{ for }x\geq 1 \\
\operatorname{arcosh}(2x^2+1)=2\operatorname{arsinh}(x)           \quad\quad \hbox{ for }x\geq 0 \\
\operatorname{arcosh}(8x^4+8x^2+1)=4\operatorname{arsinh}(x)      \quad\quad \hbox{ for }x\geq 0 
\end{align}

関連項目[編集]

脚注[編集]

  1. ^ Jan Gullberg, Mathematics: From the Birth of NumbersNew York: W. W. Norton & Company, 1997), ISBN 0-393-04002-X, p. 539には以下のような記述がある。

    arcsinh x, arccosh x などの似て非なる表記法は、厳しく糾弾されなければならない。実際これらの関数はarcとは何らの関係もなく、areaと関係するものであり、それはラテン語で書かれた真の名前が証明している。

    arsinh     = ラテン語: area sinus hyperbolicus
    arcosh     = ラテン語: area cosinus hyperbolicus

  2. ^ Eberhard Zeidler, Wolfgang Hackbusch and Hans Rudolf Schwarz, Oxford Users' Guide to Mathematics (Bruce Hunt英訳, Oxford: Oxford University Press, 2004), ISBN 0-19-850763-1, Section 0.2.13: "The inverse hyperbolic functions", p. 68には以下のような記述がある。
    逆双曲線関数のラテン語名は、area sinus hyperbolicus, area cosinus hyperbolicus, area tangens hyperbolicusそしてarea cotangens hyperbolicus (x). ...である。
    上記の引用では、arsinh, arcosh, artanh, arcothをそれぞれの逆双曲線関数の表記法として採用している。
  3. ^ Ilja N. Bronshtein, Konstantin A. Semendyayev, Gerhard Musiol and Heiner Muehlig, Handbook of MathematicsBerlin: Springer-Verlag, 5th ed., 2007), ISBN 3-540-72121-5, doi:10.1007/978-3-540-72122-2, Section 2.10: "Area Functions", p. 91には以下のような記述がある。

    面積関数は双曲線関数の逆関数すなわち逆双曲線関数 である。関数sinh x, tanh x およびcoth x は厳密に単調であるので、何らの制限なく、独自の逆関数を持つ。関数cosh x は2つの単調な間隔を持つので、2つの逆関数を持つとみなすことができる。area と言う名前は、関数の幾何学的な定義は、特定の双曲的扇形の面積であるという事実を意味する。...

参考文献[編集]

外部リンク[編集]