正則行列

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動: 案内検索

正則行列(せいそくぎょうれつ、regular matrix)、非特異行列(ひとくいぎょうれつ、non-singular matrix)あるいは可逆行列(かぎゃくぎょうれつ、invertible matrix)とは行列の通常の積に関する逆元を持つ正方行列のことである。

ある上の同じサイズの正則行列の全体は一般線型群と呼ばれるを成す。 多項式の根として定められる部分群は線形代数群英語版あるいは行列群と呼ばれる代数群の一種で、その表現論代数的整数論などに広い応用を持つ幾何学的対象である。

定義[編集]

n単位行列I で表す。 の元を成分にもつ n正方行列 A に対して、

AB = I = BA

を満たす n正方行列 B が存在するとき、An正則行列、あるいは単に正則であるという。A が正則ならば上の性質を満たす B は一意に定まる。 これを A逆行列と呼び、A−1 と表す[1]

[編集]

次の複素数[2]の元を成分にもつ行列 AB を考える。


A=
\begin{pmatrix}
1 & 0 \\
0 & 2 \\
\end{pmatrix}
\quad
B = 
\begin{pmatrix}
1 & 0   \\
0 & 1/2 \\
\end{pmatrix}

このとき AB = I = BA を満たすので、A は正則行列で[3]BA の逆行列である。 一方、 B に注目すれば B も正則行列で、AB の逆行列である。

また次の行列 N は逆行列をもたないので、正則ではない。


N = \begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix}

特徴づけ[編集]

n正方行列 A に対して次は同値である。

  • A は正則行列である
  • AB = I なる n 次正方行列 B が存在する[4]
  • BA = I なる n 次正方行列 B が存在する[4]
  • A階数n である[5]
  • A は左基本変形のみによって単位行列に変形できる[5]
  • A は右基本変形のみによって単位行列に変形できる[5]
  • 一次方程式 Ax = 0 は自明な解しかもたない[6]
  • A行列式0 ではない[7]
  • A の列ベクトルは線型独立である
  • A の行ベクトルは線型独立である
  • A固有値はすべて 0 ではない

性質[編集]

n 次正則行列 AB について次が成り立つ。

  • |A−1| = |A|−1
  • (A−1)−1 = A
  • (AB)−1 = B−1A−1
  • n 次正方行列 N冪零行列ならば IN は正則で、逆行列は I + N + … + Nn − 1 である[8]

判定法[編集]

行列の正則性は行列の基本変形を使って判定できる[9]。 具体的な逆行列の計算には、基本変形を使って順に掃き出していく方法がよく使われる。 一方で、理論的には行列式を使ったクラメールの公式も重要である。 しかしこの方法は逆行列を数値計算するのには向かない[10]

関連項目[編集]


脚注[編集]

  1. ^ 斎藤 1966, p. 41.
  2. ^ この例の場合は体の標数2 でなければ何でもよい
  3. ^ ただし、この Aユニモジュラ行列ではない
  4. ^ a b 斎藤 1966, p. 48.
  5. ^ a b c 斎藤 1966, p. 52.
  6. ^ 斎藤 1966, p. 60.
  7. ^ 斎藤 1966, p. 85.
  8. ^ 斎藤 1966, p. 71.
  9. ^ 斎藤 1966, p. 53.
  10. ^ 斎藤 1966, p. 89.

参考文献[編集]