弾道ミサイル

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動: 案内検索
タイタンIIの発射

弾道ミサイル(だんどうミサイル、: ballistic missile)は、大気圏の内外を弾道を描いて飛ぶ対地ミサイルのこと。弾道弾とも呼ばれる。弾道ミサイルは最初の数分間に加速し、その後慣性によって、地球の中心焦点とする楕円軌道を飛翔する。

歴史[編集]

V2/A4[編集]

ペーネミュンデ博物館のV2

世界初の弾道ミサイルは、第二次世界大戦中にナチス・ドイツが開発したA4(V2ロケット)である。液体酸素エタノール燃料とするこのミサイルは大戦中に三千発以上が使用され、主にロンドンアントウェルペンなどへの攻撃に使われたが、戦局を変えるには至らなかった。開発者はヨーロッパから北米が攻撃可能な射程を持った大型二段式ミサイルA10の開発も進めていたが、完成せずに終わった。

R-7とR-11[編集]

大戦終結後、ナチス・ドイツの技術は戦勝国によって持ち出され、これを元にそれぞれの国で独自の研究が始まった。アメリカイギリス鹵獲した完成品の打ち上げテストで満足している中、ソ連だけは熱心に研究を進めていた。ソ連はドイツに残っていた資材を用いて自国でV2/A4を生産した他、改良版であるR-1(SS-1A)、拡大版であるR-2(SS-2)、ソ連の独自技術を加えたR-5(SS-3)がコロリョフ設計局を中心に次々と開発された。この後、コロリョフ設計局はより大型化した大陸間弾道ミサイル(ICBM)であるR-7(SS-6)、R-9(SS-8)を開発し、ソ連領内から北米を射程圏内に収めるようになる。これらのミサイルはまだ信頼性が低く、また、少数が配備されたに過ぎないが、大陸間弾道弾の出現は当時まだ大型ミサイルが無かったアメリカをパニック状態に陥れた。こののち開発されたR-16(SS-7)が1962年に大量配備され、ようやくソ連の核攻撃能力が実効性のあるものとなった。

V2/A4の設計を元に、常温保存が可能な液体燃料を使用する別のエンジンを備えたミサイルがR-11(SS-1B)であり、スカッド(Scud-A)のNATOコードネームが与えられた。R-11はさらにエンジンが改良されたR-17(SS-1C Scud-B)となる。R-17はソ連の軍事援助によって各地に輸出され、その後の多くの紛争で使用された他、リバースエンジニアリングによって誕生した多くの派生ミサイルの先祖となった。

ミサイル・ギャップ[編集]

アメリカにおけるロケット関連の研究は、戦争直後は低調であった。空軍マタドールメイス海軍のレギュラスのように、アメリカはむしろ有翼の巡航ミサイルの開発に熱心であった。しかしながらアメリカに渡ったV2/A4開発チームの主要メンバーであるフォン・ブラウンとドルンベルガーらは陸軍と組んでロケットの開発を続けており、1959年にはアメリカで最初の弾道ミサイルであるレッドストーン西ドイツに配備されている。一方大型化にあたっては、まずレッドストーンの後継として空軍のソアーと陸海合同のジュピターが計画されたが、後に海軍は計画から降り、独自に固体燃料のポラリスを開発する。その後国防総省の決定で中・長距離弾道ミサイルの管轄が空軍にまとめられることになり、ジュピターもまた、空軍のミサイルとなる。ジュピターは1959年にトルコイタリアに、ソアーは1958年イギリスに配備された。

1957年ソ連R-7配備と、人工衛星スプートニク1号の打ち上げはアメリカ国内にスプートニク・ショックおよびミサイル・ギャップ論争と呼ばれる政治的議論を発生させた。1960年アメリカ合衆国大統領選挙において民主党候補者のジョン・F・ケネディはミサイル・ギャップの原因として共和党の国防政策を強く批判し、勝利の要因の1つとなった。ところがケネディ政権の国防長官ロバート・マクナマラはミサイル・ギャップはそもそも存在せず、むしろアメリカのほうが弾道ミサイルの開発、配備数どちらもソ連を大きくリードしていることを知った。共和党の候補者リチャード・ニクソンU-2などの情報収集に支障が生じることを恐れて反論しなかったとされている。

SSBNの出現[編集]

ポラリス

V2/A4の発展計画の一つに水密の大型キャニスターに納めたミサイルUボートで北米沿岸まで曳航し、発射するという物があった。実現はしなかったが潜水艦から弾道ミサイルを発射するアイデアがかなり初期から検討されていた事がわかる。ソ連1959年にR-11(SS-1B)を改良したR-11FMを開発し、これをズールー型通常動力潜水艦に搭載して、史上初の潜水艦発射弾道ミサイル(SLBM)とした。その後アメリカで原子力潜水艦(SSN)が開発され、ポラリスA-1ミサイルが実用化されると、このミサイルを搭載するジョージ・ワシントン級潜水艦発射弾道ミサイル搭載原子力潜水艦(SSBN)が1960年に実戦配備される。米海軍のSLBMは、こののちポセイドンC-3からトライデントD-5へ進化している。

SSNの開発に遅れを取ったソ連では、ヤンキーI型とR-27(SS-N-6)が就役したのは1968年になった。また、イギリスフランスもSLBMを自国の核戦力の主力としており、イギリスはアメリカからトライデントD-5を購入してヴァンガード級原子力潜水艦に搭載し、フランスは自国開発のMSBS M45ミサイルを搭載したル・トリオンファン級原子力潜水艦を運用している。中華人民共和国も独自に開発した巨浪1号SLBMを搭載する夏(Xia)型原子力潜水艦を運用している。

キューバ危機[編集]

アトラス

1962年には中距離弾道ミサイル(IRBM)のR-12(SS-4)がキューバに配備された事を契機としてキューバ危機が発生している。キューバ危機の間、デフコン2が発令され、北米配備のICBMであるアトラスタイタンI、試験配備が始まったばかりのミニットマンIと、イギリスに配備されたソアーIRBM、トルコイタリアに配備されたジュピターIRBMは実際に発射準備態勢に入った。ソ連でもR-7が発射台上で待機状態となり、キューバに配備されたR-12が発射準備態勢に入った。このような状況はキューバ危機の時が最初で、以後はそのような事態は発生していない。

ICBMの発展[編集]

アメリカで最初のICBMアトラスである。アトラスは1959年に配備され、1965年まで使用されている。この後、タイタンミニットマンピースキーパーが開発されている。ミニットマンIIIとピースキーパーはMIRVとなった。

一方のソ連ではR-36(SS-9)、UR100(SS-11)、RT-2(SS-13)から、MR UR100(SS-17)、R-36M(SS-18)にいたってMIRV化されている。START-IIによってR-36Mが退役した後は、単弾頭RT-2PM1/M2 トーポリMが配備されている。ソ連では道路移動式ICBMとして初期のRT-21(SS-16)から現在のRT-2PM(SS-25)までが開発されている。

中国はソ連から提供されたR-2(SS-2)を元に弾道ミサイルの開発を進め、1964年核実験に成功すると核弾頭装備の東風2号1966年から配備され、大韓民国日本を攻撃する能力を得た。続く東風3号グアム東風4号ハワイ東風5号でついに中国西部から北米を攻撃する能力を得た。東風3号は1988年通常弾頭に変更されてサウジアラビアに売却されている。

弾道ミサイル技術の拡散[編集]

1970年代から弾道ミサイル技術は中小国も取得できるようになった。ソ連スカッドに代表される安価な短距離弾道ミサイルイラン・イラク戦争湾岸戦争でも実戦使用された。1980年代には北朝鮮イラクなどで弾道ミサイルの開発が進展し、それらの国からさらにインドパキスタンイランなどにも製造技術が拡散した。北朝鮮は弾道ミサイル技術の輸出を重要な外貨獲得手段であると明言しており、パキスタン、イラン、エジプトリビアイエメンシリアにスカッド発展型の弾道ミサイルを輸出している。2007年時点で45ヶ国が弾道ミサイルを保有していると見られている。このような弾道ミサイル技術の広まりに対して拡散に対する安全保障構想(PSI構想)が実施されるようになった。

弾道ミサイルの特徴[編集]

弾道ミサイルの特徴としては長射程、困難な迎撃、高価、低い命中精度が挙げられる。

迎撃が困難[編集]

弾道ミサイルを撃墜し難い理由にはいくつかの要因がある。

射程が長い
射程が長いと目標からはなれた安全な場所から発射できる。発射される前に発射母機ごと破壊しようとすることが困難である。また、射程が長いと攻撃可能な範囲が広いので発射前の発見が困難となる。
迎撃困難な軌道を通る
放物線軌道の高い高度では弾道ミサイルは短距離弾道ミサイル(以下SRBM)クラスでも宇宙空間を通る。そこまで迎撃用のミサイルを打ち上げるのは容易ではない。通常の地対空ミサイル空対空ミサイルで迎撃できる高度は高性能なものでもせいぜい数十km程度なので、弾道ミサイルを打ち落とすには専用ミサイルの開発か既存ミサイルの性能向上が必要となる。
発見しにくい
鉄道移動型RT-23
一箇所に据え置いている発射台方式やサイロ方式は別にして、鉄道上や道路上を移動できる弾道ミサイルや潜水艦発射弾道ミサイル(以下SLBM)は発射箇所自体が必要に応じて移動するため、発射する前に発見するのが困難になる。
現にナチス・ドイツV2ロケットトラックに牽引されて運ばれる方法だったため、敗戦まで1度も発射前に発見・妨害されたことがなかった。
潜水艦発射弾道ミサイルは偵察衛星からその姿を確認することは不可能なため、発見するのは一層困難になる。
着弾までの時間が非常に短い
弾道ミサイルが発射されてから着弾するまでの時間は距離や軌道によって変化する。射程が10,000km前後ある大陸間弾道ミサイル(以下ICBM)であれば30分程度あるので、早期警戒衛星によって発射と同時に探知することで迎撃体制をとることは(SRBMなどに比べれば)容易ではある。SRBMクラスは5分程度で着弾するため、相応の技術をつぎ込んだ迎撃システムが必要となる。
非常に速度が速い
着弾に近いミサイルの高度が低くなる段階では速度の問題があるため簡単には迎撃できない。
ミサイルは再突入の段階で落下の法則通り加速度的に高速となる。ICBMクラスであれば秒速約7km程度、IRBMでも秒速2km程度の終末速度となる。また、IRBMでもロフテッド軌道をとることで終末速度をより高速にすることもできる。この非常に高速なミサイルを迎撃する弾道弾迎撃ミサイルは高い精度(もしくは誤差を気にせず広範囲を焼き尽くすための核弾頭装備)が必要となる(詳しくは該当記事を参照)。
迎撃後の処理も必要になる
通常弾頭であればこの危険はほとんどないが、核弾頭や化学物質を積んだ弾頭の場合、打ち落とせても落下地点付近が弾頭に搭載された物質で汚染される。発射前から発射直後であれば自国が汚染されることはないが、既存の迎撃システムは迎撃できるのが中盤から落下直前であるため、自国やその周辺が汚染される。

命中精度[編集]

基本的に弾道ミサイルは最初の数分間加速した後は慣性で飛行するだけとなっている。つまり最初の数分間で到達した速度によって着弾地点はほとんど決まる。加速終了地点から着弾地点までの距離が短ければその差はそれほど問題にはならないが弾道ミサイルの場合数千km単位で飛ぶためその誤差は徐々に大きくなり着弾地点では大きな差となってしまう。そのことから弾道弾が長射程になるほど、その誘導装置は高度な技術が必要で高価となり、開発国の技術レベルが国家の戦略にも影響を与える。

命中精度の指数であるCEP(半数必中界)は100m-2km程度で、優秀であるほど兵器としての運用の柔軟性を持つ。米ソ(ロシア)の保有するICBMは1万キロを超える射程であるにもかかわらず、CEPは100-200メートルである。CEPが優秀であれば、弾頭威力が低くとも目標に対して十分な破壊力を発揮する事ができる。弾頭威力が低くても構わないということは(その技術があると言う前提ではあるが)弾頭の小型化を図ることができ、弾道弾の搭載量が充分であれば多弾頭化(MRV)を行う事ができる。誘導技術がさらに進歩するならば複数個別誘導再突入体(MIRV)が可能になり、さらには大威力弾頭で都市を攻撃するだけのカウンターバリュー戦略から、軍事目標を選択して攻撃するカウンターフォース戦略に選択肢を広げる事が可能となる。

この誘導装置の能力(命中精度)から、目標を破壊するための所要威力が算定され、その威力を発揮する核弾頭の小型化が困難であれば、弾頭は大型化し、弾道弾のペイロードを食いつぶすために必然的に単弾頭化したり射程が低下する。

価格[編集]

価格については極端に差があるため一概には言えないが、例えばアメリカ海軍が使用する潜水艦発射弾道ミサイル(以下SLBM)トライデントD5は1基3,090万ドルと公表されている。アメリカ海軍が現在調達を進める最新鋭戦闘機F/A-18E/Fスーパーホーネットが3,500万ドル、世界で3,000機を販売することで調達価格を抑えることを目的として開発中のF-35JSF(統合打撃戦闘機 Joint Strike Fighter)の予価が3,000万ドルと言われる。戦略核兵器の整備が「軍隊をもうワンセット」そろえるほどの高額となる理由である。

当然ミサイル兵器として使用するにはこれだけではなくミサイルの整備、ICBMであればミサイルサイロの建造、運用費用、SLBMであれば潜水艦にかかる諸費用、更に言えばそれを護衛する潜水艦にかかる諸費用と一つのシステムとして稼動させるには天文学的な金額が必要である。

それに対して弾頭の重量は数百kg-数t程度であるため、通常兵器として使用するには費用対効果の面から見た場合最悪と言える。しかし、湾岸戦争時のイラクのように、旧式で命中精度も劣る弾道ミサイルを心理作戦に用いる場合もある。

使用目的[編集]

これらの特徴から弾道ミサイルは戦略兵器としての意味合いが大きい。核兵器を搭載したICBMSLBMは安全な自国内およびその周辺から敵国を確実に攻撃することが可能で、お互いにそのような状況を作り出すことによりどちらも攻撃できない状況(相互確証破壊)ができ、それにより自国の安全を保障する。

過去には通常弾頭の弾道ミサイルが使用されたこともあるが、これは敵国民の感情を煽るのが目的と言える。弾道ミサイルによる攻撃だけでは敵国を占領できるわけでもなく、敵戦力を削ることもほとんどできないため実際のところダメージは少ない。しかし弾道ミサイルは事前に危険を知らせることがほぼ不可能で、いつどこに飛んでくるかわからないため敵国民に与える心理的な影響は大きい。

構造[編集]

基本的にはロケットと同じ構造であるため通常の衛星打ち上げ用ロケットとして転用される物もある。例えば衛星打ち上げ用タイタンロケットはICBMとして開発されたものが衛星用に転用されたものであり、ソユーズA型ロケットは宇宙船を核弾頭に積み替えるだけで弾道ミサイルに転用できた。ミサイルの段数はSRBM、準中距離弾道ミサイル(以下MRBM)程度だと1段、IRBMだと2段、ICBMでは液体燃料の場合2段、固体燃料の場合3段が多い。

逆に自国の技術で衛星を打ち上げられる国は事実上ICBM技術を持っていると見なされる。特に下記燃料と保管の問題から、固体ロケットによる打ち上げ技術を持つ国は注目される事になり、ミューロケットの技術を持つ日本もまた例外ではない。

弾頭[編集]

ミサイル弾頭は容量や重量が限られるため、核兵器・化学兵器をはじめとする大量破壊兵器を搭載することが検討される。特に長距離弾道弾については大気圏外から落下してくるものであり、速い降下速度による空力加熱のため、弾頭は高温となる。このため、生物兵器や化学兵器を搭載しようとすれば、これらが無力化しないような工夫が必要となる。高い成層圏より落下してくる弾頭は再突入体と呼ばれ、その形状は空気による減速が適度で、落下方向がぶれずに安定するよう円錐型をしていて、空力加熱による高熱から内部を守るために耐熱層を備える。

複数弾頭[編集]

ピースキーパーのMIRVの軌跡

弾道ミサイルに搭載される複数弾頭にはMRV、MIRV、MaRVが挙げられる。核弾頭の小型化およびロケット技術の向上による大推力化により、一基のミサイルに複数個の弾頭を搭載できるようになった。これは、ミサイルの効率的な利用ができるほか、迎撃ミサイルに対する回避手段としても有効なものである。始めにMRV(Multiple Reentry vehicle,複数再突入体)が開発された。MRVは同一目標に対するもので、各弾頭は似たような軌道を取る。ポラリスA-3はMRVであり、3個の弾頭を搭載している。

MIRVは複数個別誘導再突入体などと呼ばれるもので、これは文字通り複数の弾頭を装備し、それぞれ別の目標に対して攻撃が可能な弾頭である。MIRVやMRVを導入するには核弾頭の小型化技術が必要で、21世紀初頭現在で多弾頭化された弾道ミサイルの開発に成功した国はアメリカロシア中国[1]のみで、フランスはアメリカの技術協力を受けてMRVを開発し、イギリスはミサイルをアメリカから購入している。

MaRVは機動式再突入体と言われる。これも文字通り再突入時に迎撃を回避したり命中率を高めるための弾頭であるがあまり使用されていない。

これら複数弾頭のミサイルは再突入体の分離時、本物の核弾頭の他にデコイチャフなど、ペネトレーション・エイドと呼ばれる敵の迎撃を困難にするための攪乱手段を備えたものもある。ただ、重量の軽減のため、風船のように内部が空洞のデコイは空気の希薄な成層圏でのみ有効で、空気抵抗の大きい大気圏に落ちてくる頃には本物とは違った軌道をとるので地上の迎撃側では容易に峻別できる。冷戦終結によって、弾頭の搭載数を米ソ双方で減少・制限されており、これらの新たな兵器開発も停止されている。

燃料[編集]

燃料は、初期のころには国によらず液体燃料が使われていた。現在では西側諸国では固体燃料が、東側諸国では液体燃料が主流となっている。初期の液体燃料は酸化剤に液体酸素を用いていたためにミサイルに搭載したまま保存しておくことが不可能で、発射命令が下ってから燃料注入を行い、実際に発射態勢に成るまでに数時間かかり、即応性に問題があった。現在の弾道ミサイルに使用される液体燃料(非対称ジメチルヒドラジン四酸化二窒素の組み合わせなど)の場合ミサイルに搭載したまま長期間の保存が可能であるため即応性に関しては固体燃料との差は無い。

現在において液体燃料と固体燃料の差は比推力と毒性、安全性、それにコントロールのしやすさである。液体燃料は固体燃料より比推力が大きいためミサイルの段数は固体燃料に比べ1段少ないのが一般的であるがその代わりに燃料は有毒で2種類の燃料が混ざっただけで発火するため取り扱いには注意が必要である。それに対して固体燃料は段数が1段増えてしまうものの固体であるため直接付近で火事でも起こらない限り問題は無く、その点は液体燃料に比べ優れている。また、固体燃料は1度点火したら推力の調整も何もできず最後まで燃えてしまうが、液体燃料は燃焼量の調整により速度のばらつきを抑制できるため、固体燃料より命中精度は高い。ただし誘導方式にも左右されるため、液体固体の違いによる大きな差はない。

誘導方式[編集]

戦略核兵器が使用される状況、すなわち核攻撃下における確実な反撃、を考えるならば、GPSや無線誘導などは誘導方法として考慮されない。なぜなら、最悪の場合、大統領が専用機(E-4 NEACP National Emergency Airborne Command Post)からの発射命令を下すだけというケースもありうるためである。故にGPSやロランといった航法支援を受けない完全なスタンドアローンが求められる。そのため、現代においてもINSやアストロトラッカー(天測航法装置)による誘導がほとんどとなる。通常弾頭対地ミサイル(兵器や軍事施設を目標としたもの)の場合レーダー赤外線で目標を捕らえるが、弾道ミサイルによって運搬される弾頭(再突入体)自体にはエンジンなどは搭載されていないため、弾頭がミサイルから切り離されて大気圏に再突入を開始した後の軌道変更は不可能である(エンジンなどを搭載したMaRVと呼ばれるものも存在するが例外的)。しかしながらその誘導精度は高く、最も性能の高いアメリカICBMピースキーパーは、CEPにおいて90メートルという数値を持つ。これは単純な相互確証破壊(MAD)による破壊力の追求から、軍事目標を攻撃する能力が求められるように戦略そのものが変化したためで、小型化によって多弾頭化を果たしつつ、威力の低下(W87熱核弾頭で300キロトン)があっても硬化サイロを格納したICBMごと破壊することが可能となっている。300psiの爆風に耐える硬化サイロが目標の場合、CEPが500フィート(152メートル)であれば500キロトンの弾頭威力であっても99パーセント以上の確率で破壊できるが、5,000フィート(1,524メートル)になると1メガトンの弾頭では12パーセント、5メガトンの弾頭を使用しても34パーセントでしかなく、CEPが10,000フィート(3,048メートル)ともなればほぼ不可能となる。

アメリカ海軍が使用するトライデントD5では更に命中精度を高めるためGPSを併用した誘導システムの試験が行われたことがある。これは通常弾頭の使用を考慮して行われた試験であると言われるが結局費用対効果の面から不要と判断されたのか実用化にはいたっていない。

宇宙ロケットとの違い[編集]

ケープカナベラル空軍基地で打ち上げられる人工衛星打ち上げ用タイタンI

初期の弾道ミサイルと宇宙ロケットとの基本的な構造の差は少ない。大雑把に言えば、大射程の弾道ミサイルから弾頭を外し、代わりに衛星を載せれば宇宙ロケットとなる。世界初の人工衛星スプートニク1号を打ち上げたR-7SS-6の改良型であり、アメリカ初の人工衛星エクスプローラー1号を打ち上げたジュノー1レッドストーンの改良型である。

平時に商業目的で打ち上げられる宇宙ロケットには弾道ミサイルのような即応性は求められず、安価で毒性が無い液体水素や液体酸素などが用いられている。サイロや車両、艦船など限られた保守体制であっても発射可能な状態で保管しなければならない弾道ミサイルは、経済性や安全性に目を瞑って猛毒だが常温保管可能な推進剤を選択したり、推進効率が落ちても固体燃料を選択しなければならない。宇宙ロケットにも固体燃料を使うものはあるが、打ち上げスケジュールに合わせて経済性を優先して生産される。経済性や効率を無視してでも安定して長期間の保管が要求される軍用のミサイルとは成分製法価格に違いがある。

双方に求められる性能も、宇宙ロケットは比推力や経済性や信頼性であるのに対し、弾道ミサイルは即応性やメンテナンスの容易さなどとなる。いったん採用されれば数百基単位で生産しつつも基本的に発射されず、また、不具合があっても同じ目標に予備を撃てばいいミサイル[要出典]と、年に数機の建造ながら確実な打ち上げを求められ、さらに有人ミッションであれば要求される安全係数が跳ね上がる宇宙ロケットは積荷の値段の差がある。

飛行経路[編集]

弾道ミサイルの飛行経路は、亜軌道と呼ばれる近地点地球半径以下の楕円軌道を描く。弾道ミサイルは発射後燃料をすべて使って最高1,000km以上の遠地点高度まで上昇(スペースシャトルの周回軌道は高度300-400km程度)、その後慣性で飛行し、その位置エネルギー速度に変換しながら落下する。通常のボールなどを飛行機などから落としても空気抵抗があるため思いのほか速度は伸びないが、弾道ミサイルは上昇時に与えられる速度エネルギーと高高度による位置エネルギーによって地上到達時の速度が秒速数kmにまでなる。

さらにその楕円軌道にも、大きく分けて2つのタイプがある。

ミニマムエナジー軌道[編集]

比較的低い軌道を取り、効率的に飛翔させる軌道。 ロフテッド軌道に比べ、射程を遠くまで取ることができるが、終末速度があまり速くならず高度も低いため、迎撃されやすい。

ロフテッド軌道[編集]

比較的高い軌道を取る軌道。 高い軌道を取る上、終末速度も上がるために迎撃されにくいが、位置エネルギーを稼ぐ必要があるために射程はミニマムエナジー軌道で飛ばすより短くなる。

発射母体[編集]

弾道ミサイルの発射母体にはサイロ潜水艦列車、車両などがある。

発射台[編集]

ロケットの発射台と同じく、地上に設備を作ってそこから発射するもの。

初期にはこのようなものが作られたこともあったが、偵察衛星偵察機から容易にその実態をつかむことが可能である。 また、発射台にミサイルを備え付けておくと雨風に晒されるため常に備え付けておくことはできず、発射するときは数日から数時間前には発射台に備え付け、発射準備をする必要がある。

偵察衛星により24時間の監視が可能になった後は、発射前からその様子の変化を捉えられ、攻撃機爆撃機が進入して攻撃、あるいは敵国から巡航ミサイルが打ち込まれると、ミサイルは発射前に破壊されてしまう。また、破壊しなくともその様子が知られれば敵軍は厳戒態勢を取り、マスメディアにその情報を流して牽制することも可能なため、現在弾道ミサイルでこの方法をとっている国はほとんどない。

北朝鮮にあるテポドンの発射台はこの方式であったため、アメリカの偵察衛星に発見され、実際に発射前から情報が写真とともに民間に流されており、現在ではGoogle Earthでも東経129度40分、北緯40度51分にその姿を確認することができる[2]

ミサイルサイロ[編集]

サイロを出るピースキーパー

ミサイルサイロは地下に作られた弾道ミサイルの基地である。サイロは偵察衛星などで容易に発見されてしまうが、サイロ自体が非常に強固な構造となっているため、かなりの近距離で核弾頭が爆発しない限り破壊されることはない。また、慣性誘導の精度は発射母体の位置をどれだけ正確に把握できるかが鍵となるがサイロの位置は当然のことながら正確に把握されているため弾道ミサイルに搭載される慣性誘導装置の精度は他のものに比べ必然的に高くなる。そのためサイロに格納された弾道ミサイルは主に敵ミサイルサイロなど高い命中率が要求される目標に対して使用される。

ミサイルサイロからの発射は通常ホットローンチ方式であり、ミサイルを発射する際にロケットエンジンから出る強い炎や気流によってサイロの内部機器が損傷され、相当の修理が必要になるか、再利用することが不可能になる。そのためソ連ロシアR-36やアメリカのピースキーパーでは、コールドローンチ方式と呼ばれる、エンジン点火前にミサイルの本体を圧縮空気などでサイロ外に射出し、サイロ外でロケットエンジンに点火させる方式を採用している。

潜水艦[編集]

水中にいる潜水艦は陸上のミサイルサイロ列車、車両に比べ格段に発見されづらいため攻撃された際も一番生き残る可能性が高いが、その反面自艦の正確な位置の測定が困難であるためサイロに比べると命中精度は低めである。これらの特徴からSLBMは攻撃を受けた際に敵国の都市に対する報復攻撃を行う手段として認識されている。その任務上、常時水中で待機している必要があるため通常は原子力潜水艦が使用される。

当初は発射時に潜水艦が水面に浮上しなければならなかったが、現在では直接水中からミサイルが発射される方式となっている。

列車・車両[編集]

SS-20とキャリア車両

列車や発射台付き車両(Transporter-Erector-Launcher;TEL)も移動ができるため比較的発見され難いが、陸地にいるため潜水艦などより発見されやすい。V2ロケットではこの方式で、発射台がトラックに牽引されて移動して発射していた。

ミサイルを搭載した車両は大型の特殊車両であり、移動の自由度は思いのほか低くなる。移動すると自位置の正確な測定が困難になるので、サイロに比べ慣性誘導の精度は低くなる。湾岸戦争では、イラク軍がこの種の発射台に搭載されたスカッドを使用した。本物の車輌に加え、多数のダミーも使用されたため、米英軍はこれを捕捉するために大量の戦力を投入したにも関わらず、成果は思うように上がらなかった。そのため、この種の兵器の実用性が確認された(R-17(SS-1C))。

その他[編集]

1950年代には航空機から発射される弾道ミサイル(空中発射弾道ミサイル)も研究されていたが、コストおよび技術面の問題により実用化にはいたっていない。なお、このタイプのロケットは人工衛星打ち上げには有効で、ペガサスロケットが実用化されている。

分類[編集]

射程による分類[編集]

現在ある弾道ミサイルは以下のように分類することができる。ただしこの分類は厳格な定義では無い。MRBMを分類に入れない場合やSRBM-IRBMまでをまとめて戦域弾道ミサイル(TBM)と呼ぶ場合もある。現在のところ厳格に定義されているのは米ソ間におけるICBMのみである。

発射母体による分類[編集]

など

関連項目[編集]