室温超伝導

出典: フリー百科事典『ウィキペディア(Wikipedia)』
常温超伝導から転送)

室温超伝導(しつおんちょうでんどう、: Room temperature superconductivity)は、超伝導になる転移温度がおよそ300K程度であること。

社会への影響[編集]

現在、超伝導を利用した技術はMRIなどの特殊な例に限られているが、室温超伝導が達成されれば冷却コストを掛けずに超伝導の持つメリットを享受することができるようになる。そのことから室温超伝導の実現は産業革命をも凌駕する影響を人類に与えると言われる[1]

室温超伝導体で電力損失が発生しない送電線を開発すれば、世界規模の電力システムの構築が可能になる[2]。また、核融合炉の実用化にも有効でありエネルギー問題の解決も期待されている[3]

その他には、浮遊する車の実現[4]リニアモーターカーの世界的普及[1]、超省エネの超高速コンピューター[2]、高度に安全な体内埋め込みデバイス[3]、小型で低価格の量子コンピューター[5]脳波を読み取るコミュニケーション・ツール[6]などが可能になる。

実現の試み[編集]

2020年10月、ロチェスター大学のランガ・ディアス博士らのグループが、光化学的に合成される炭素質水素化硫黄英語: Carbonaceous sulfur hydrideの三元系で、267GPaの圧力下において、287.7K(15℃)で超伝導状態になることが報告された[7]が、2022年9月26日、Natureはデータや再現性に問題があるとして論文を撤回した。

2023年3月8日、同じくディアス博士らのグループが高圧下で水素化ルテチウムが294 K(21℃)で超伝導になったとする論文を再度Natureに発表し、追試が行われたが、理論的にも実験的にも否定的な見解が多かった。2023年6月9日、イリノイ大学シカゴ校のラッセル・ヘムリー教授のグループが追試に成功したという報告が、インターネット上の論文サーバである「arXiv」に報告された[8][9]

その他の報告[編集]

  • ランタン水素化物 - 170GPa(170万気圧)の超高圧下において250K(-23℃)[10]
  • イットリウム・バリウム・銅の酸化物の単結晶 - イットリウム・バリウム・銅の酸化物の単結晶に、強力なレーザーを照射して0.2ピコ(ピコは1兆分の1)秒間[11]
  • LK-99

脚注[編集]

  1. ^ a b 10-2 強結合超流動の量子渦構造を計算し、室温超伝導の世界を覗く”. rdreview.jaea.go.jp. 2022年6月22日閲覧。
  2. ^ a b SPring-8が拓く室温超伝導の可能性”. www.spring8.or.jp. 2022年6月22日閲覧。
  3. ^ a b エネルギー錬金術は「超伝導+核融合」で:『富豪刑事 Balance:UNLIMITED』最終回ガジェット解説”. www.gizmodo.jp (2020年11月12日). 2022年6月22日閲覧。
  4. ^ 人類の夢!室温超伝導を実現する”. 2022年6月22日閲覧。
  5. ^ 世界初、15°C「室温超伝導」達成 夢の新技術へ突破口”. MITテクノロジーレビュー. 2022年6月22日閲覧。
  6. ^ 脳で直接コミュニケーションする未来へ、必要なブレイクスルーは何なのか聞いてきた。”. www.gizmodo.jp (2014年3月27日). 2022年6月26日閲覧。
  7. ^ 物理学:水素化物の室温超伝導”. Nature Japan (2020年10月15日). 2020年10月16日閲覧。
  8. ^ ついに実現、室温超伝導? それともまたも幻で終わるのか? 100年の歴史の転換点、いま超伝導研究で進行している出来事とは | JBpress (ジェイビープレス)”. JBpress(日本ビジネスプレス). 日本ビジネスプレスグループ (2023年6月22日). 2023年6月25日閲覧。
  9. ^ N. P. Salke, A. C. Mark, M. Ahart, R. J. Hemley, 2023, "Evidence for Near Ambient Superconductivity in the Lu-N-H System," arXiv:2306.06301.
  10. ^ 室温に近い超伝導”. www.natureasia.com (2019年5月23日). 2020年3月13日閲覧。
  11. ^ 夢の室温超電導の予兆か 世界で新物質相次ぐ”. 日経BP (2016年12月12日). 2017年7月21日閲覧。

関連項目[編集]

外部リンク[編集]