乱数列

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動: 案内検索

乱数列(らんすうれつ)とはランダムな数列のこと。 数学的に述べれば、今得られている数列 x1, x2, ..., xn から次の数列の値 xn+1 が予測できない数列。乱数列の各要素を乱数という。

概要[編集]

乱数列は、実験計画やシミュレーションで利用されるほか、秘密鍵の生成など暗号でも利用される。

擬似乱数列と真の乱数列[編集]

有限オートマトンであるコンピュータでは、基本的には確定的な計算によってしか数列を作ることができない。しかし、確定的な計算によって作られた数列でありながら、統計的にはサイコロなどで作られた乱数列と同様の性質を持つ数列の生成法があり、そのようにして生成された数列を擬似乱数列と言う。また、擬似乱数列に対して、サイコロなどで作られた乱数列を真の乱数列と言うことがある。

乱数列の種類[編集]

乱数列はそのとる値や分布によって分類される。

2進乱数[編集]

2進乱数とは01 (あるいは-1と1)がランダムに現れるような乱数である。ストリーム暗号スペクトラム拡散通信に用いられる。

一様乱数[編集]

一様乱数とはある有限の区間を区切って、その区間内で全ての実数が同じ確率(濃度)で現れるような乱数のことである。つまり連続一様分布に従う。

コンピュータではある最大値までの範囲内の整数値を取る乱数列を発生させて、それを最大値で割ることで[0,1](0以上1以下)の一様乱数が得られる。また、(最大値+1)で割ることで[0,1)(0以上1未満)の一様乱数が得られる。このようにして生成した一様乱数は原理的に有理数のみで無理数は含まれないため、これは真の一様乱数ではない。デジタルコンピュータの性質上、無理数を扱うことはできない。

[a,b](a以上b以下)の区間の一様乱数が必要な場合は、[0,1]の乱数列を用意して、これに(b-a)をかけて、さらにaを加えることで得られる。

[a,b)(a以上b未満)が必要な場合は同様にして[0,1)を利用する。

整数の一様分布乱数[編集]

コンピュータでは基本的な乱数として[1]、0からある最大値までの整数に一様分布する乱数を発生させる関数(rand()やメルセンヌ・ツイスタなど)が用意されている。これを加工することで色々な分布の乱数を作り出すことができる。

正規乱数[編集]

正規乱数とは正規分布を持つような乱数である。正規乱数は工学においてはホワイトガウスノイズとして利用される。

平均μ、分散σ2 の正規分布N(μ, σ2)のような正規乱数を作る場合、まず(0,1]の一様乱数をボックス=ミューラー法(Box-Muller transform)で変換してN(0, 1)の正規乱数を得ることから始める。

一様乱数(0,1]の要素\alpha\betaを次の変換を用いて変換する。

  • \sqrt{-2\cdot\ln \alpha}\cdot\sin (2\pi \beta)
  • \sqrt{-2\cdot\ln \alpha}\cdot\cos (2\pi \beta)

このようにして二つの相関のないN(0, 1)の正規乱数が得られる[2]。ただし\ln自然対数

この正規乱数にσをかけて、さらにμを加えることで正規分布N(μ, σ2)の正規乱数が得られる。

またこれとは別に、簡単で擬似的な方法として、12個の一様乱数[0,1]の和から6を減ずる方法もよく用いられる[2]中心極限定理によって、独立した複数の一様乱数の和の分布は正規分布に近づく。さらに、12個の一様乱数[0,1]の和の分散は1となるため、6を減ずるだけで正規分布に近い確率分布が得られ、計算に都合がよい。

近年のパーソナルコンピュータプロセッサの進歩によって三角関数や対数関数の演算が速くなっているため、1つの正規乱数あたり12回もの一様乱数生成を要するこの方法より、1つの正規乱数あたり1回の一様乱数生成で済むボックス=ミューラー法を用いた方が、一般的によく知られた多くの擬似乱数生成器との組み合わせにおいては高速である。

但し、非常に高速な擬似乱数生成器を用いるならば、中心極限定理を用いた手法はボックス=ミュラー法を用いるよりも十分に高速な正規乱数の生成が可能である。

ボードゲームテーブルトークRPGなどの遊戯において、複数個のサイコロの目の合計を使用している例がよく見られるが、これは中心極限定理による疑似的な正規乱数を生成し、その分布を利用しているといえる。

乱数の生成法[編集]

有限オートマトンであるコンピュータは、外部からの入力がない限り計算によって求める確定的な擬似乱数しか生成できない。

擬似乱数でない乱数をコンピュータで利用するには、外部のエントロピを入力するための専用ハードウェアなどを利用することになる。そのようなハードウェア乱数生成器を内蔵したCPUチップセットOSによってキーボードの打鍵タイミングなどから乱数が生成される擬似デバイスなどが存在する。このような乱数の生成法はコンピュータの歴史より古く、コンピュータが一般的に利用可能となるまでは「乱数賽」(1~10の全ての数字が1/10の確率で現れるよう作られたサイコロ。3軸に対して対称の10面体は作れないので、正20面体の各面に2回ずつ番号を振ったものが通常使われる)や袋に入れた乱数カードを引き出すハイハット方式で生成していた。

脚注[編集]

[ヘルプ]
  1. ^ 奥村(1991)、P295。
  2. ^ a b 奥村(1991)、P133-134。

参考文献[編集]

関連記事[編集]