ミリカンの油滴実験

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動: 案内検索

ミリカンの油滴実験(ミリカンのゆてきじっけん)は、ロバート・ミリカンハーヴェイ・フレッチャーらが1909年に行った電子電荷(素電荷・電気素量)を測定するための実験である。彼らは、二枚の金属電極間で帯電させた油滴が静止するように、重力クーロン力を釣り合わせて、これを測定した。電極間の電場の強さを知ることによって、油滴の電荷を決定することができる。たくさんの油滴に関して実験を繰り返すことによって、測定値がいつもある特定値の整数倍にあたることが見出された。この実験により、電子一個の持つ電荷が1.602 × 10−19Cであることがわかった。

既に電子の質量と素電荷の比率(比電荷)はジョゼフ・ジョン・トムソンにより測定されており、ミリカンのこの実験により素電荷の値が確定したため、電子の質量も確定することが出来た。

ミリカンはこの功績によって1924年ノーベル物理学賞を受賞した。以来この実験は、なかなか高価で正確に行うには難しいが、学生たちによって繰り返し行われてきた。

電気素量を求める実験は、それ以前にもC・T・R・ウィルソンが考案した水蒸気生成方式を用い、1903年H・A・ウィルソンHarold A. Wilson, 1874–1964)が行なっていたが、水蒸気は測定中に蒸発が起こり精度が劣化する。ミリカンは蒸発しにくい油を用いた。

この実験の別の形として、自由なクォークを探索する実験が行われている(もし存在すれば、素電荷の1/3の値が観測されるはずである)がいまだ成功していない。現在の理論ではクォークは非常に強く束縛(強い力による閉じ込め)されており自由なクォークは存在しないと予言されている。

実際の測定手順[編集]

実験装置概略図
実験装置外観 左に油滴を作る霧吹きが、正面に顕微鏡が写っている。

電界中で落下している油滴に働く力は次の4つである。

  1. 重力 : F_{\rm g}=\frac{4}{3} \, \pi \cdot r^3 \cdot \rho \cdot g
  2. 浮力 : F_{\rm A}=\frac{4}{3} \, \pi r^3 \delta g
  3. 空気抵抗(ストークスの式による): F_{\rm R}=6 \cdot \pi \cdot \eta \cdot r \cdot v^*
  4. 電界 によるクーロン力: F_{\rm E} = q \cdot E = \frac{qU}{d}

ここで:

\eta = 空気の粘度

\rho = 油の密度 \delta = 空気の密度

v^* = 油滴の落下速度

r = 油滴の径

U = 電位差

d = 電極間の間隔

g = 重力加速度

である。

重力と電界による吸引力が釣り合った条件が得られたとしても、精度を得るための問題の1つは重力を計算するために必要な油滴の半径の測定精度であると思われる。油滴の半径は0.001mm程度であり、空中に浮遊している油滴の半径を測定することになるからである。しかも重力は半径の3乗に比例するので誤差の影響は大きくなる。

それを避けるために、電界の向きを変えた時のそれぞれの落下速度v_1v_2から、電荷量を求める。粘性抵抗による油滴の終端速度は、電場がない時には0.1mm/s程度と非常に遅いため、瞬時に終端速度に達する。電場中でも、仮に終端速度が10mm/sとすると、速度は約千分の一秒程度で平衡になると考えられる。

重力と浮力は同じ形をしているので\varrho = \rho - \delta とする。

結果は

q = \frac{9 \cdot d \cdot \pi}{2 \cdot U}\sqrt{\frac{\eta^3}{\varrho \cdot g}}\cdot\sqrt{v_1 + v_2} (v_1 - v_2)

となり、電荷量qは速度の差(∝電場の差)に比例する。また半径も求められ

r = \frac{3}{2}\sqrt{\frac{\eta}{\varrho \cdot g} \cdot (v_2+v_1)}

となる。半径は電場にはよらないので、速度の平均値(電場がない時の速度)の平方根に比例する。

参考文献[編集]

  • R.A.Millikan, "On the Elementary Electrical Charge and the Avogadro Constant," .Phys. Rev., Vol.2(2), (1913), pp.109-143 測定装置について。
  • R.A.Millikan, "The Isolation of an Ion , a Precision Measurement of Its Charge, and the Correction of Stokes's Low," .Phys. Rev. (Series I), Vol.32(4), (1911) pp.349-397 電気素量およびアボガドロ定数などの測定結果について。電気素量はCGS単位系で表されており、SI単位系に直すと、e=1.593±0.030[C]が結論されている。