ポリアデニル化

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動: 案内検索
成熟した真核生物mRNAの典型的構造

ポリアデニル化RNAポリA鎖を付加することである。ポリA鎖は多数のAMPから構成されており、RNAをアデニン塩基で伸長することに相当する。真核生物では、ポリアデニル化は翻訳可能な成熟mRNAを生産するために不可欠であり、広い意味では遺伝子発現過程の一部であるといえる。

ポリアデニル化は転写終了時から始まる。特定のタンパク質複合体がRNA3' 末端のセグメントを切り離し、そこからポリA鎖を合成する。いくつかの遺伝子では、切断できる部位が複数あり、その内1箇所にポリA鎖が追加される。そのため、ポリアデニル化は選択的スプライシングのように、1つの遺伝子から複数の転写産物を作り出す[1]

ポリA鎖はmRNAの安定性に関わり、核外輸送、翻訳に重要である。これは時間と共に短くなり、十分に短くなった時点でmRNAは酵素により分解される[2]。だが、少数の細胞では、ポリA鎖の短いmRNAが再度のポリアデニル化に備えて細胞質に蓄えられている[3]。細菌ではこれと反対に、ポリアデニル化はRNAの分解を引き起こす[4]。これは真核細胞の非コードRNAでも見られる[5]。ポリアデニル化が生物全般に見られることは、これが生命の歴史の中で早い段階に進化したことを意味する。

背景[編集]

RNAの化学構造。塩基配列は個々のRNAによって異なる。
RNAmRNAも参照

RNAは巨大な生体分子で、ヌクレオチドが繋がって構成されている。ポリA(ポリアデニル酸)[6]とは、RNA塩基(A:アデニン・U:ウラシル・G:グアニン・C:シトシン)のうち、Aのみが繋がったものである。RNAは通常、鋳型DNAから転写されることで合成される。転写は5' 末端から3' 末端に向けて進むため、塩基配列も5'から3'に向けて表記される。ポリA鎖が付加されるのは3' 末端である[1][7]

伝令RNA(mRNA)翻訳されてタンパク合成の鋳型となるコーディング領域を含む。その他の部分は非翻訳領域と呼ばれ、mRNAの活性を制御している[8]非コードRNAという翻訳されないRNAも多くあり、非翻訳領域と同じように様々な制御を行う[9]

核ポリアデニル化[編集]

機能[編集]

核において、ポリA化は転写終了時に行われる。ポリA鎖はmRNAを細胞質での分解から保護し、転写終結、核外輸送、翻訳を補助する[2]。真核細胞のmRNAはほぼ全てポリA化されているが[10]、動物の複製依存的ヒストンmRNAは例外である[11]。これは真核細胞のmRNAがポリA鎖を欠く唯一の例で、プリンリッチ配列に続くステムループ構造で終端し、切断箇所を示している。この構造は"ヒストン下流要素"(HDE)と呼ばれる[12]

多くの真核細胞の非コードRNAは転写終了時にポリA化される。miRNAのように、末端がプロセシングで除かれるため、転写中間体にはポリA鎖があるが成熟RNAにはないものもある[13][14]。だが例えば、X染色体の不活性化を調節するXistなど、遺伝子発現制御を行う多くの長鎖非コードRNAでは、ポリA鎖は成熟RNAの一部である[15]

機構[編集]

構成要素:[10]

CPSF: 切断・ポリアデニル化因子
CstF: 切断刺激因子
PAP: ポリアデニル酸ポリメラーゼ
PAB2: ポリA結合タンパク質2
CFI: 切断因子I
CFII: 切断因子II

真核細胞核でのポリアデニル化の対象は、RNAポリメラーゼIIにより作られるmRNA前駆体などである。多タンパク複合体(構成要素は右表)が3' 末端近くを開裂し、そこからポリA化が始まる。開裂は酵素CPSFによって触媒され[11]、結合部位から10–30塩基下流で起こる[16]。この部位にはよくAAUAAA配列があるが、多少変化してもCPSFは結合することができる[17]。別の2つのタンパク、CstFとCFIもこれに関与し、CstFはCPSF結合部位の下流にあるGUリッチ領域と結合する[18]。CFIはさらに別の箇所(哺乳類ではUGUAA配列[19][20][21])を認識し、AAUAAA配列が失われてもCPSFを媒介することができる[22][23]。ポリアデニル化シグナル(開裂複合体に認識される配列モチーフ)は分類群によって変化する。ヒトのポリA化部位はほぼAAUAAA配列を含むが[18]、この配列は植物・菌類では珍しい[24]

CstFはRNAポリメラーゼIIとも結合しているため、転写後すぐに開裂を行うことができる[25]。詳しくは分かっていないが、開裂にはCFIIというタンパクも関わる[26]。ポリA化シグナルに伴う開裂部位は、50塩基程度は変化することができる[27]

RNAが開裂するとポリAポリメラーゼによるポリA化が始まり、ATPを用いてポリA鎖を伸長させていく[28]。その後、別のタンパクPAB2が短く新しいポリA鎖に結合し、RNAとポリAポリメラーゼの親和性を増加させる。ポリA鎖が約250塩基に達すると酵素はCPSFから外れ、ポリA化は終了する[29][30]。CPSFはRNAポリメラーゼIIと接触し、転写終結を伝達する[31][32]。ポリA化機構はRNAイントロンを除去するスプライソソームとも物理的に結合している[23]

下流作用[編集]

ポリA鎖はポリA結合タンパク質結合部位として機能する。ポリA結合タンパクはRNAの核外移送・翻訳を促進し、分解を妨げる[33]。酵母では、ポリA鎖を短縮しmRNAの核外移送を可能にするポリAヌクレアーゼの結合も媒介する。mRNAはポリA結合タンパクと共に細胞質に移送されるが、移送されなかったmRNAはエキソソーム複合体によって分解される[34][35]。ポリA結合タンパクは翻訳に影響する様々なタンパクの結合も媒介し[34]、その内の1つが40Sリボソームサブユニットを媒介するeIF4Gである[36]。だが、ポリA鎖は全てのmRNAの翻訳に不可欠というわけではない[37]

脱アデニル化[編集]

真核生物体細胞では、細胞質にあるmRNAのポリA鎖は次第に短くなり、翻訳が妨げられて分解が促進される[38]。だが、これが起こるにはかなり時間がかかる[39]。このプロセスは、mRNAの3' 非翻訳領域と相補的なmiRNAによって加速される[40]卵母細胞では、ポリA鎖が短縮されたmRNAは分解されないが、代わりに翻訳されずに貯蔵される。このRNAは卵母細胞活性化中に、細胞質でのポリA化によって再活性化される[41]

動物では、ポリAリボヌクレアーゼ(PARN)は5' キャップに結合しポリA鎖から塩基を除去する。5' キャップ・ポリA鎖の保護はmRNA分解の制御に重要である。RNAの5' キャップに翻訳開始因子4E(eIF4E)、かつポリA鎖に翻訳開始因子4G(eIF4G)が結合している場合、PARNによる脱アデニル化は減少する。脱アデニル化はRNA結合タンパクにも制御される。一旦ポリA鎖が除去されると5' キャップも除去され、RNAは分解される。酵母からは、脱アデニル化に関わると見られる他の酵素も見つかっている[42]

代替ポリアデニル化[編集]

同じ遺伝子に異なるポリA化を施した結果

多くのコード遺伝子は複数のポリアデニル化部位を持つため、3' 末端が異なる複数のmRNAをコードしているといえる[24][43][44]。代替ポリA化は3' 非翻訳領域の長さを変更するため、それが含むmiRNA結合部位も変更される[16][45]。転写産物を安定化するmiRNAもあるが、miRNAは翻訳を抑制し、それが結合したmRNAの分解を促進する傾向がある[46][47]。代替ポリA化はコーディング領域を短縮し、別のタンパクを作ることもあるが[48][49]、3' 非翻訳領域の短縮よりは珍しい[24]

ポリA化部位の選択は細胞外からの刺激に影響される他、ポリA化酵素の発現にも依存する[50][51]。例えば、マクロファージリポ多糖(免疫応答を起こす細菌分泌物)への反応として、切断刺激因子(CstF)のサブユニットCstF-64の発現が上昇する。この結果ポリA化部位が変更され、防御タンパクmRNA(例えばリゾチームTNF-α)の3' 非翻訳領域の調節エレメントが除去される。このようなmRNAは長い半減期を持ち、より多くのタンパクを作る[50]。ポリA化機構以外のRNA結合タンパクもポリA化部位の選択に影響し[52][53][54][55]、例えばポリA化シグナルの近くをDNAメチル化する、などの方法で行われる[56]

細胞質ポリアデニル化[編集]

動物の初期胚発生、または神経細胞シナプス後段では細胞質でのポリA化が行われる。短縮したポリA鎖を伸長することで、mRNAを翻訳することができる[38][57]。短縮した鎖は約20塩基だが、伸長された鎖は80–150塩基になる[3]

マウス初期胚では母親由来のRNAを細胞質ポリA化することで、2細胞期の途中(ヒトでは4細胞期)まで転写が始まらないにもかかわらず、細胞は成長することができる[58][59]脳では、細胞質ポリA化は記憶の形成に重要な長期増強に関わり、学習中に活性化される[3][60]

細胞質ポリA化はRNA結合タンパクCPSFCPEBを必要とし、Pumilioのような他のRNA結合タンパクも関わる[61]。細胞の種類により、核と同じポリAポリメラーゼ(PAP)・細胞質ポリメラーゼのGLD-2のどちらかが用いられる[62]

真核生物のRNA分解[編集]

少なくとも酵母では、tRNArRNAsnRNAsnoRNAを含む多くの非コードRNAで、ポリA化はRNA分解を促進する[63]。核においてはTRAMP複合体により、約40個の塩基が3' 末端に付加されることでポリA化が行われ[64]、その後エキソソーム複合体により分解される[65]。ポリA鎖はヒトrRNA断片からも発見され、Aのみのホモポリマー・ほぼAのヘテロポリマーの両方が見られる[66]

原核生物、細胞小器官[編集]

多くの細菌はmRNA・非コードRNA双方をポリA化できる。ポリA鎖はデグラドソームの2つのRNA分解酵素、PNPaseとRNaseEの働きを促進する。特有の二次構造が3' 末端をブロックしていても、ポリA鎖でRNAを伸長することでPNPaseは新しい3' 末端に結合することができる。伸長と分解を繰り返すことで、PNPaseは少しずつ二次構造を解体していく。ポリA鎖はエンドリボヌクレアーゼでの分解も促進する[67]。細菌のポリA鎖は約30塩基の長さである[68]

動物・トリパノソーマミトコンドリアは安定なポリA鎖・不安定なポリA鎖双方を持つ。不安定な鎖はmRNAと非コードRNA双方で見られる。ポリA鎖は平均43塩基である。安定な鎖では、ゲノムが終止コドン(UAA)のU・UAまでしかコードしていないため、ポリA鎖は終止コドンの一部となっている。植物ミトコンドリアは不安定なポリA鎖しかもたず、酵母ミトコンドリアはポリA鎖を全く持たない[69]

多くの細菌・ミトコンドリアはポリAポリメラーゼを持つが、PNPase自身もポリA化を行う。この酵素は細菌[70]、ミトコンドリア[71]葉緑体[72]古細菌エキソソーム複合体の構成部品に見られる[73]。Aへの選択性は完全ではないが、ほぼAのみを用いて3' 末端を伸長できる。葉緑体でも細菌のように、PNPaseによるポリA化はRNA分解を促進し[74]、おそらく古細菌でも同じである[69]

進化[編集]

ポリA化はあらゆる生物に見られるわけではない[75][76]。だが、全ドメインの大部分の生物がこの機能を持つことから、全生物の共通祖先がおそらく何らかのポリA化機構を持っていたと推定される[68]。mRNAをポリA化しない生物は、進化の過程でこの機能を喪失したと考えられる。その実例は細菌Mycoplasma gallisepticum高度好塩菌Haloferax volcaniiから得られたmRNAのみで、真核生物では確認されていない[77][78]

最も古いポリA化酵素は、RNAを分解する複合体(細菌ではデグラドソーム、古細菌ではエキソソーム複合体)の一部であるPNPaseである[79]。この酵素はRNAを3' 末端から加リン酸分解し、NDPに変換する。この反応は可逆なため、RNAにヌクレオチドを付加して伸長させることもできる。エネルギー通貨であるATPが他のNTPより高濃度であるため、伸長した鎖はAリッチである。RNA分解へのAリッチ鎖の関与が、その後のポリAポリメラーゼ(純粋なポリA鎖の合成酵素)の進化を促したことが示唆されている[80]

ポリAポリメラーゼの起源は古くなく、tRNAの3' 末端を終端するCCA付加酵素から、細菌と真核生物で独立に進化した。その活性ドメインは他のポリメラーゼと相同である[65]。真核生物への、細菌のCCA付加酵素遺伝子の水平伝播により、古細菌様CCA付加酵素がポリAポリメラーゼに機能を変更することができたと推測されている[68]古細菌藍藻はポリAポリメラーゼを進化させなかった[80]

沿革[編集]

ポリA化は1960年、細胞核抽出物内の酵素が、ATPをポリアデニンに変換したことから発見された[81][82]。多様な細胞から見つかっていたにもかかわらず、1971年にポリA配列がmRNAから見つかるまでその機能は不明のままだった[83][84]。当初は3' 末端をヌクレアーゼから保護するだけと考えられていたが、その後に核外移送や翻訳の際に果たす役割が解明された。関与するポリメラーゼは1960年代に精製され、1970年代に特定されたが、それを制御する無数の補助タンパクが発見されたのは1990年代始めになってからだった[83]

参照[編集]

出典[編集]

  1. ^ a b Proudfoot, Nick J.; Furger, Andre; Dye, Michael J. (2002). “Integrating mRNA Processing with Transcription”. Cell 108 (4): 501–12. doi:10.1016/S0092-8674(02)00617-7. PMID 11909521. 
  2. ^ a b Guhaniyogi, J; Brewer, G (2001). “Regulation of mRNA stability in mammalian cells”. Gene 265 (1–2): 11–23. doi:10.1016/S0378-1119(01)00350-X. PMID 11255003. 
  3. ^ a b c Richter, Joel D. (1999). “Cytoplasmic Polyadenylation in Development and Beyond”. Microbiology and Molecular Biology Reviews 63 (2): 446–56. PMC 98972. PMID 10357857. http://mmbr.asm.org/cgi/pmidlookup?view=long&pmid=10357857. 
  4. ^ Steege, Deborah A. (2000). “Emerging features of mRNA decay in bacteria”. RNA 6 (8): 1079–90. doi:10.1017/S1355838200001023. PMC 1369983. PMID 10943888. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1369983. 
  5. ^ Anderson, James T. (2005). “RNA Turnover: Unexpected Consequences of Being Tailed”. Current Biology 15 (16): R635–8. doi:10.1016/j.cub.2005.08.002. PMID 16111937. 
  6. ^ Stevens, A (1963). “Ribonucleic Acids-Biosynthesis and Degradation”. Annual Review of Biochemistry 32: 15–42. doi:10.1146/annurev.bi.32.070163.000311. PMID 14140701. 
  7. ^ Lehninger, Albert L.; Nelson, David L.; Cox, Michael M., eds (1993). Principles of biochemistry (2nd ed.). New York: Worth. ISBN 978-0-87901-500-8. [要ページ番号]
  8. ^ Abaza, I.; Gebauer, F. (2008). “Trading translation with RNA-binding proteins”. RNA 14 (3): 404–9. doi:10.1261/rna.848208. PMC 2248257. PMID 18212021. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2248257. 
  9. ^ Mattick, J. S. (2006). “Non-coding RNA”. Human Molecular Genetics 15 (90001): R17–29. doi:10.1093/hmg/ddl046. 
  10. ^ a b Hunt, Arthur G; Xu, Ruqiang; Addepalli, Balasubrahmanyam; Rao, Suryadevara; Forbes, Kevin P; Meeks, Lisa R; Xing, Denghui; Mo, Min et al. (2008). “Arabidopsis mRNA polyadenylation machinery: comprehensive analysis of protein-protein interactions and gene expression profiling”. BMC Genomics 9: 220. doi:10.1186/1471-2164-9-220. PMC 2391170. PMID 18479511. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2391170. 
  11. ^ a b Davila Lopez, M.; Samuelsson, T. (2007). “Early evolution of histone mRNA 3' end processing”. RNA 14 (1): 1–10. doi:10.1261/rna.782308. PMC 2151031. PMID 17998288. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2151031. 
  12. ^ Marzluff, William F.; Gongidi, Preetam; Woods, Keith R.; Jin, Jianping; Maltais, Lois J. (2002). “The Human and Mouse Replication-Dependent Histone Genes”. Genomics 80 (5): 487–98. doi:10.1016/S0888-7543(02)96850-3. PMID 12408966. 
  13. ^ Saini, H. K.; Griffiths-Jones, S.; Enright, A. J. (2007). “Genomic analysis of human microRNA transcripts”. Proceedings of the National Academy of Sciences 104 (45): 17719–24. doi:10.1073/pnas.0703890104. 
  14. ^ Yoshikawa, M. (2005). “A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis”. Genes & Development 19 (18): 2164–75. doi:10.1101/gad.1352605. PMC 1221887. PMID 16131612. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1221887. 
  15. ^ Amaral, Paulo P.; Mattick, John S. (2008). “Noncoding RNA in development”. Mammalian Genome 19 (7–8): 454–92. doi:10.1007/s00335-008-9136-7. PMID 18839252. 
  16. ^ a b Liu, D.; Brockman, J. M.; Dass, B.; Hutchins, L. N.; Singh, P.; McCarrey, J. R.; MacDonald, C. C.; Graber, J. H. (2006). “Systematic variation in mRNA 3'-processing signals during mouse spermatogenesis”. Nucleic Acids Research 35 (1): 234–46. doi:10.1093/nar/gkl919. PMC 1802579. PMID 17158511. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1802579. 
  17. ^ Lutz, Carol S. (2008). “Alternative Polyadenylation: A Twist on mRNA 3′ End Formation”. ACS Chemical Biology 3 (10): 609–17. doi:10.1021/cb800138w. PMID 18817380. 
  18. ^ a b Beaudoing, E.; Freier, S; Wyatt, JR; Claverie, JM; Gautheret, D (2000). “Patterns of Variant Polyadenylation Signal Usage in Human Genes”. Genome Research 10 (7): 1001–10. doi:10.1101/gr.10.7.1001. PMC 310884. PMID 10899149. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=310884. 
  19. ^ Brown, Kirk M; Gilmartin, Gregory M (2003). “A Mechanism for the Regulation of Pre-mRNA 3′ Processing by Human Cleavage Factor Im”. Molecular Cell 12 (6): 1467–76. doi:10.1016/S1097-2765(03)00453-2. PMID 14690600. 
  20. ^ Yang, Q.; Gilmartin, G. M.; Doublie, S. (2010). “Structural basis of UGUA recognition by the Nudix protein CFIm25 and implications for a regulatory role in mRNA 3' processing”. Proceedings of the National Academy of Sciences 107 (22): 10062–7. doi:10.1073/pnas.1000848107. 
  21. ^ Yang, Qin; Coseno, Molly; Gilmartin, Gregory M.; Doublié, Sylvie (2011). “Crystal Structure of a Human Cleavage Factor CFIm25/CFIm68/RNA Complex Provides an Insight into Poly(A) Site Recognition and RNA Looping”. Structure 19 (3): 368–77. doi:10.1016/j.str.2010.12.021. PMC 3056899. PMID 21295486. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3056899. 
  22. ^ Venkataraman, K. (2005). “Analysis of a noncanonical poly(A) site reveals a tripartite mechanism for vertebrate poly(A) site recognition”. Genes & Development 19 (11): 1315–27. doi:10.1101/gad.1298605. PMC 1142555. PMID 15937220. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1142555. 
  23. ^ a b Millevoi, Stefania; Loulergue, Clarisse; Dettwiler, Sabine; Karaa, Sarah Zeïneb; Keller, Walter; Antoniou, Michael; Vagner, StéPhan (2006). “An interaction between U2AF 65 and CF Im links the splicing and 3′ end processing machineries”. The EMBO Journal 25 (20): 4854–64. doi:10.1038/sj.emboj.7601331. PMC 1618107. PMID 17024186. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1618107. 
  24. ^ a b c Shen, Y.; Ji, G.; Haas, B. J.; Wu, X.; Zheng, J.; Reese, G. J.; Li, Q. Q. (2008). “Genome level analysis of rice mRNA 3'-end processing signals and alternative polyadenylation”. Nucleic Acids Research 36 (9): 3150–61. doi:10.1093/nar/gkn158. PMC 2396415. PMID 18411206. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2396415. 
  25. ^ Glover-Cutter, Kira; Kim, Soojin; Espinosa, Joaquin; Bentley, David L (2007). “RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes”. Nature Structural & Molecular Biology 15 (1): 71–8. doi:10.1038/nsmb1352. 
  26. ^ Stumpf, G.; Domdey, H. (1996). “Dependence of Yeast Pre-mRNA 3'-End Processing on CFT1: A Sequence Homolog of the Mammalian AAUAAA Binding Factor”. Science 274 (5292): 1517–20. doi:10.1126/science.274.5292.1517. PMID 8929410. 
  27. ^ Iseli, C.; Stevenson, B. J.; De Souza, S. J.; Samaia, H. B.; Camargo, A. A.; Buetow, K. H.; Strausberg, R. L.; Simpson, A. J.G. et al. (2002). “Long-Range Heterogeneity at the 3' Ends of Human mRNAs”. Genome Research 12 (7): 1068–74. doi:10.1101/gr.62002. PMC 186619. PMID 12097343. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=186619. 
  28. ^ Balbo, Paul B.; Bohm, Andrew (2007). “Mechanism of Poly(A) Polymerase: Structure of the Enzyme-MgATP-RNA Ternary Complex and Kinetic Analysis”. Structure 15 (9): 1117–31. doi:10.1016/j.str.2007.07.010. PMC 2032019. PMID 17850751. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2032019. 
  29. ^ Viphakone, N.; Voisinet-Hakil, F.; Minvielle-Sebastia, L. (2008). “Molecular dissection of mRNA poly(A) tail length control in yeast”. Nucleic Acids Research 36 (7): 2418–33. doi:10.1093/nar/gkn080. PMC 2367721. PMID 18304944. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2367721. 
  30. ^ Wahle, Elmar (1995). “Poly(A) Tail Length Control Is Caused by Termination of Processive Synthesis”. Journal of Biological Chemistry 270 (6): 2800–8. doi:10.1074/jbc.270.6.2800 (inactive 2010-03-18). PMID 7852352. http://www.jbc.org/cgi/pmidlookup?view=long&pmid=7852352. 
  31. ^ Dichtl, B.; Blank, D; Sadowski, M; Hübner, W; Weiser, S; Keller, W (2002). “Yhh1p/Cft1p directly links poly(A) site recognition and RNA polymerase II transcription termination”. The EMBO Journal 21 (15): 4125–35. doi:10.1093/emboj/cdf390. PMC 126137. PMID 12145212. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=126137. 
  32. ^ Nag, Anita; Narsinh, Kazim; Martinson, Harold G (2007). “The poly(A)-dependent transcriptional pause is mediated by CPSF acting on the body of the polymerase”. Nature Structural & Molecular Biology 14 (7): 662–9. doi:10.1038/nsmb1253. 
  33. ^ Coller, J. M.; Gray, N. K.; Wickens, M. P. (1998). “mRNA stabilization by poly(A) binding protein is independent of poly(A) and requires translation”. Genes & Development 12 (20): 3226–35. doi:10.1101/gad.12.20.3226. 
  34. ^ a b Siddiqui, N.; Mangus, D. A.; Chang, T.-C.; Palermino, J.-M.; Shyu, A.-B.; Gehring, K. (2007). “Poly(A) Nuclease Interacts with the C-terminal Domain of Polyadenylate-binding Protein Domain from Poly(A)-binding Protein”. Journal of Biological Chemistry 282 (34): 25067–75. doi:10.1074/jbc.M701256200. PMID 17595167. 
  35. ^ Vinciguerra, Patrizia; Stutz, FrançOise (2004). “mRNA export: an assembly line from genes to nuclear pores”. Current Opinion in Cell Biology 16 (3): 285–92. doi:10.1016/j.ceb.2004.03.013. PMID 15145353. 
  36. ^ Gray, N. K.; Coller, JM; Dickson, KS; Wickens, M (2000). “Multiple portions of poly(A)-binding protein stimulate translation in vivo”. The EMBO Journal 19 (17): 4723–33. doi:10.1093/emboj/19.17.4723. PMC 302064. PMID 10970864. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=302064. 
  37. ^ Meaux, S.; Van Hoof, A (2006). “Yeast transcripts cleaved by an internal ribozyme provide new insight into the role of the cap and poly(A) tail in translation and mRNA decay”. RNA 12 (7): 1323–37. doi:10.1261/rna.46306. PMC 1484436. PMID 16714281. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1484436. 
  38. ^ a b Meijer, H. A.; Bushell, M.; Hill, K.; Gant, T. W.; Willis, A. E.; Jones, P.; De Moor, C. H. (2007). “A novel method for poly(A) fractionation reveals a large population of mRNAs with a short poly(A) tail in mammalian cells”. Nucleic Acids Research 35 (19): e132–e132. doi:10.1093/nar/gkm830. 
  39. ^ Lehner, B.; Sanderson, CM (2004). “A Protein Interaction Framework for Human mRNA Degradation”. Genome Research 14 (7): 1315–23. doi:10.1101/gr.2122004. PMC 442147. PMID 15231747. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=442147. 
  40. ^ Wu, L. (2006). “From the Cover: MicroRNAs direct rapid deadenylation of mRNA”. Proceedings of the National Academy of Sciences 103 (11): 4034–9. doi:10.1073/pnas.0510928103. 
  41. ^ Cui, J.; Sackton, K. L.; Horner, V. L.; Kumar, K. E.; Wolfner, M. F. (2008). “Wispy, the Drosophila Homolog of GLD-2, Is Required During Oogenesis and Egg Activation”. Genetics 178 (4): 2017–29. doi:10.1534/genetics.107.084558. PMC 2323793. PMID 18430932. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2323793. 
  42. ^ Wilusz, Carol J.; Wormington, Michael; Peltz, Stuart W. (2001). “The cap-to-tail guide to mRNA turnover”. Nature Reviews Molecular Cell Biology 2 (4): 237–46. doi:10.1038/35067025. PMID 11283721. 
  43. ^ Tian, B.; Hu, J; Zhang, H; Lutz, CS (2005). “A large-scale analysis of mRNA polyadenylation of human and mouse genes”. Nucleic Acids Research 33 (1): 201–12. doi:10.1093/nar/gki158. PMC 546146. PMID 15647503. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=546146. 
  44. ^ Danckwardt, Sven; Hentze, Matthias W; Kulozik, Andreas E (2008). “3′ end mRNA processing: molecular mechanisms and implications for health and disease”. The EMBO Journal 27 (3): 482–98. doi:10.1038/sj.emboj.7601932. PMC 2241648. PMID 18256699. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2241648. 
  45. ^ Sandberg, R.; Neilson, J. R.; Sarma, A.; Sharp, P. A.; Burge, C. B. (2008). “Proliferating Cells Express mRNAs with Shortened 3' Untranslated Regions and Fewer MicroRNA Target Sites”. Science 320 (5883): 1643–7. doi:10.1126/science.1155390. PMC 2587246. PMID 18566288. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2587246. 
  46. ^ Tili, Esmerina; Michaille, Jean-Jacques; Calin, George Adrian (2008). “Expression and function of micro-RNAs in immune cells during normal or disease state”. International Journal of Medical Sciences 5 (2): 73–9. PMC 2288788. PMID 18392144. http://www.medsci.org/v05p0073.htm. 
  47. ^ Ghosh, T.; Soni, K.; Scaria, V.; Halimani, M.; Bhattacharjee, C.; Pillai, B. (2008). “MicroRNA-mediated up-regulation of an alternatively polyadenylated variant of the mouse cytoplasmic  -actin gene”. Nucleic Acids Research 36 (19): 6318–32. doi:10.1093/nar/gkn624. PMC 2577349. PMID 18835850. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2577349. 
  48. ^ Alt, F; Bothwell, AL; Knapp, M; Siden, E; Mather, E; Koshland, M; Baltimore, D (1980). “Synthesis of secreted and membrane-bound immunoglobulin mu heavy chains is directed by mRNAs that differ at their 3′ ends”. Cell 20 (2): 293–301. doi:10.1016/0092-8674(80)90615-7. PMID 6771018. 
  49. ^ Tian, B.; Pan, Z.; Lee, J. Y. (2007). “Widespread mRNA polyadenylation events in introns indicate dynamic interplay between polyadenylation and splicing”. Genome Research 17 (2): 156–65. doi:10.1101/gr.5532707. PMC 1781347. PMID 17210931. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1781347. 
  50. ^ a b Shell, S. A.; Hesse, C; Morris Jr, SM; Milcarek, C (2005). “Elevated Levels of the 64-kDa Cleavage Stimulatory Factor (CstF-64) in Lipopolysaccharide-stimulated Macrophages Influence Gene Expression and Induce Alternative Poly(A) Site Selection”. Journal of Biological Chemistry 280 (48): 39950–61. doi:10.1074/jbc.M508848200. PMID 16207706. 
  51. ^ Danckwardt, Sven; Gantzert, Anne-Susan; Macher-Goeppinger, Stephan; Probst, Hans Christian; Gentzel, Marc; Wilm, Matthias; Gröne, Hermann-Josef; Schirmacher, Peter et al. (2011). “p38 MAPK Controls Prothrombin Expression by Regulated RNA 3′ End Processing”. Molecular Cell 41 (3): 298–310. doi:10.1016/j.molcel.2010.12.032. PMID 21292162. 
  52. ^ Licatalosi, Donny D.; Mele, Aldo; Fak, John J.; Ule, Jernej; Kayikci, Melis; Chi, Sung Wook; Clark, Tyson A.; Schweitzer, Anthony C. et al. (2008). “HITS-CLIP yields genome-wide insights into brain alternative RNA processing”. Nature 456 (7221): 464–9. doi:10.1038/nature07488. PMC 2597294. PMID 18978773. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2597294. 
  53. ^ Hall-Pogar, T.; Liang, S.; Hague, L. K.; Lutz, C. S. (2007). “Specific trans-acting proteins interact with auxiliary RNA polyadenylation elements in the COX-2 3'-UTR”. RNA 13 (7): 1103–15. doi:10.1261/rna.577707. PMC 1894925. PMID 17507659. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1894925. 
  54. ^ Danckwardt, Sven; Kaufmann, Isabelle; Gentzel, Marc; Foerstner, Konrad U; Gantzert, Anne-Susan; Gehring, Niels H; Neu-Yilik, Gabriele; Bork, Peer et al. (2007). “Splicing factors stimulate polyadenylation via USEs at non-canonical 3′ end formation signals”. The EMBO Journal 26 (11): 2658–69. doi:10.1038/sj.emboj.7601699. PMC 1888663. PMID 17464285. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1888663. 
  55. ^ Danckwardt, Sven; Gantzert, Anne-Susan; Macher-Goeppinger, Stephan; Probst, Hans Christian; Gentzel, Marc; Wilm, Matthias; Gröne, Hermann-Josef; Schirmacher, Peter et al. (2011). “p38 MAPK Controls Prothrombin Expression by Regulated RNA 3′ End Processing”. Molecular Cell 41 (3): 298–310. doi:10.1016/j.molcel.2010.12.032. PMID 21292162. 
  56. ^ Wood, A. J.; Schulz, R.; Woodfine, K.; Koltowska, K.; Beechey, C. V.; Peters, J.; Bourc'his, D.; Oakey, R. J. (2008). “Regulation of alternative polyadenylation by genomic imprinting”. Genes & Development 22 (9): 1141–6. doi:10.1101/gad.473408. 
  57. ^ Jung, M.-Y.; Lorenz, L.; Richter, J. D. (2006). “Translational Control by Neuroguidin, a Eukaryotic Initiation Factor 4E and CPEB Binding Protein”. Molecular and Cellular Biology 26 (11): 4277–87. doi:10.1128/MCB.02470-05. PMC 1489097. PMID 16705177. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1489097. 
  58. ^ Sakurai, Takayuki; Sato, Masahiro; Kimura, Minoru (2005). “Diverse patterns of poly(A) tail elongation and shortening of murine maternal mRNAs from fully grown oocyte to 2-cell embryo stages”. Biochemical and Biophysical Research Communications 336 (4): 1181–9. doi:10.1016/j.bbrc.2005.08.250. PMID 16169522. 
  59. ^ Taft, R (2008). “Virtues and limitations of the preimplantation mouse embryo as a model system”. Theriogenology 69 (1): 10–6. doi:10.1016/j.theriogenology.2007.09.032. PMC 2239213. PMID 18023855. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2239213. 
  60. ^ Richter, J (2007). “CPEB: a life in translation”. Trends in Biochemical Sciences 32 (6): 279–85. doi:10.1016/j.tibs.2007.04.004. PMID 17481902. 
  61. ^ Piqué, Maria; López, José Manuel; Foissac, Sylvain; Guigó, Roderic; Méndez, Raúl (2008). “A Combinatorial Code for CPE-Mediated Translational Control”. Cell 132 (3): 434–48. doi:10.1016/j.cell.2007.12.038. PMID 18267074. 
  62. ^ Benoit, P.; Papin, C.; Kwak, J. E.; Wickens, M.; Simonelig, M. (2008). “PAP- and GLD-2-type poly(A) polymerases are required sequentially in cytoplasmic polyadenylation and oogenesis in Drosophila”. Development 135 (11): 1969–79. doi:10.1242/dev.021444. PMID 18434412. 
  63. ^ Reinisch, Karin M; Wolin, Sandra L (2007). “Emerging themes in non-coding RNA quality control”. Current Opinion in Structural Biology 17 (2): 209–14. doi:10.1016/j.sbi.2007.03.012. PMID 17395456. 
  64. ^ Lacava, John; Houseley, Jonathan; Saveanu, Cosmin; Petfalski, Elisabeth; Thompson, Elizabeth; Jacquier, Alain; Tollervey, David (2005). “RNA Degradation by the Exosome Is Promoted by a Nuclear Polyadenylation Complex”. Cell 121 (5): 713–24. doi:10.1016/j.cell.2005.04.029. PMID 15935758. 
  65. ^ a b Martin, G.; Keller, W. (2007). “RNA-specific ribonucleotidyl transferases”. RNA 13 (11): 1834–49. doi:10.1261/rna.652807. PMC 2040100. PMID 17872511. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2040100. 
  66. ^ Slomovic, S.; Laufer, D; Geiger, D; Schuster, G (2006). “Polyadenylation of ribosomal RNA in human cells”. Nucleic Acids Research 34 (10): 2966–75. doi:10.1093/nar/gkl357. PMC 1474067. PMID 16738135. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1474067. 
  67. ^ Régnier, Philippe; Arraiano, Cecília Maria (2000). “Degradation of mRNA in bacteria: emergence of ubiquitous features”. BioEssays 22 (3): 235–44. doi:10.1002/(SICI)1521-1878(200003)22:3<235::AID-BIES5>3.0.CO;2-2. PMID 10684583. 
  68. ^ a b c Anantharaman, V.; Koonin, EV; Aravind, L (2002). “Comparative genomics and evolution of proteins involved in RNA metabolism”. Nucleic Acids Research 30 (7): 1427–64. doi:10.1093/nar/30.7.1427. PMC 101826. PMID 11917006. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=101826. 
  69. ^ a b Slomovic, Shimyn; Portnoy, Victoria; Liveanu, Varda; Schuster, Gadi (2006). “RNA Polyadenylation in Prokaryotes and Organelles; Different Tails Tell Different Tales”. Critical Reviews in Plant Sciences 25: 65–77. doi:10.1080/07352680500391337. 
  70. ^ Chang, S. A.; Cozad, M.; MacKie, G. A.; Jones, G. H. (2007). “Kinetics of Polynucleotide Phosphorylase: Comparison of Enzymes from Streptomyces and Escherichia coli and Effects of Nucleoside Diphosphates”. Journal of Bacteriology 190 (1): 98–106. doi:10.1128/JB.00327-07. PMC 2223728. PMID 17965156. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2223728. 
  71. ^ Nagaike, T; Suzuki, T; Ueda, T (2008). “Polyadenylation in mammalian mitochondria: Insights from recent studies”. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1779 (4): 266–9. doi:10.1016/j.bbagrm.2008.02.001. 
  72. ^ Walter, M.; Kilian, J; Kudla, J (2002). “PNPase activity determines the efficiency of mRNA 3'-end processing, the degradation of tRNA and the extent of polyadenylation in chloroplasts”. The EMBO Journal 21 (24): 6905–14. doi:10.1093/emboj/cdf686. PMC 139106. PMID 12486011. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=139106. 
  73. ^ Portnoy, V.; Schuster, G. (2006). “RNA polyadenylation and degradation in different Archaea; roles of the exosome and RNase R”. Nucleic Acids Research 34 (20): 5923–31. doi:10.1093/nar/gkl763. PMC 1635327. PMID 17065466. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1635327. 
  74. ^ Yehudai-Resheff, S. (2003). “Domain Analysis of the Chloroplast Polynucleotide Phosphorylase Reveals Discrete Functions in RNA Degradation, Polyadenylation, and Sequence Homology with Exosome Proteins”. The Plant Cell Online 15 (9): 2003–19. doi:10.1105/tpc.013326. 
  75. ^ Sarkar, Nilima (1997). “POLYADENYLATION OFmRNA IN PROKARYOTES”. Annual Review of Biochemistry 66: 173–97. doi:10.1146/annurev.biochem.66.1.173. PMID 9242905. 
  76. ^ Slomovic, S; Portnoy, V; Schuster, G (2008). “Chapter 24 Detection and Characterization of Polyadenylated RNA in Eukarya, Bacteria, Archaea, and Organelles”. RNA Turnover in Prokaryotes, Archaea and Organelles. Methods in Enzymology. 447. pp. 501–20. doi:10.1016/S0076-6879(08)02224-6. ISBN 9780123743770. 
  77. ^ Portnoy, Victoria; Evguenieva-Hackenberg, Elena; Klein, Franziska; Walter, Pamela; Lorentzen, Esben; Klug, Gabriele; Schuster, Gadi (2005). “RNA polyadenylation in Archaea: not observed in Haloferax while the exosome polynucleotidylates RNA in Sulfolobus”. EMBO reports 6 (12): 1188–93. doi:10.1038/sj.embor.7400571. PMC 1369208. PMID 16282984. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1369208. 
  78. ^ Portnoy, Victoria; Schuster, Gadi (2008). “Mycoplasma gallisepticum as the first analyzed bacterium in which RNA is not polyadenylated”. FEMS Microbiology Letters 283 (1): 97–103. doi:10.1111/j.1574-6968.2008.01157.x. PMID 18399989. 
  79. ^ Evguenieva-Hackenberg, Elena; Roppelt, Verena; Finsterseifer, Pamela; Klug, Gabriele (2008). “Rrp4 and Csl4 Are Needed for Efficient Degradation but Not for Polyadenylation of Synthetic and Natural RNA by the Archaeal Exosome†”. Biochemistry 47 (50): 13158–68. doi:10.1021/bi8012214. PMID 19053279. 
  80. ^ a b Slomovic, S; Portnoy, V; Yehudairesheff, S; Bronshtein, E; Schuster, G (2008). “Polynucleotide phosphorylase and the archaeal exosome as poly(A)-polymerases”. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1779 (4): 247–55. doi:10.1016/j.bbagrm.2007.12.004. 
  81. ^ Edmonds, Mary; Abrams, Richard (1960). “Polynucleotide Biosynthesis: Formation of a Sequence of Adenylate Units from Adenosine Triphosphate by an Enzyme from Thymus Nuclei”. The Journal of Biological Chemistry 235 (4): 1142–9. PMID 13819354. http://www.jbc.org/cgi/pmidlookup?view=long&pmid=13819354. 
  82. ^ Colgan, D. F.; Manley, J. L. (1997). “Mechanism and regulation of mRNA polyadenylation”. Genes & Development 11 (21): 2755–66. doi:10.1101/gad.11.21.2755. 
  83. ^ a b Edmonds, M (2002). “A history of poly A sequences: from formation to factors to function”. Progress in Nucleic Acid Research and Molecular Biology Volume 71. Progress in Nucleic Acid Research and Molecular Biology. 71. pp. 285–389. doi:10.1016/S0079-6603(02)71046-5. ISBN 978-0-12-540071-8. 
  84. ^ Edmonds, M. (1971). “Polyadenylic Acid Sequences in the Heterogeneous Nuclear RNA and Rapidly-Labeled Polyribosomal RNA of HeLa cells: Possible Evidence for a Precursor Relationship”. Proceedings of the National Academy of Sciences 68 (6): 1336–40. doi:10.1073/pnas.68.6.1336. 

参考文献[編集]