ボックス=ミュラー法

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動: 案内検索

ボックス=ミュラー法(ボックス=ミュラーほう、: Box-Muller's method)とは、一様分布に従う確率変数から標準ガウス分布に従う確率変数を生成させる手法。計算機シミュレーションにおいて、ガウス分布に従う擬似乱数の発生に応用される。統計学者ジョージ・ボックス英語版マーヴィン・ミュラーによって考案された。


概要[編集]

確率変数X 及びY が互いに独立で、ともに(0,1)上での一様分布に従うものとする。このとき、


\begin{align}
Z_1 &= \sqrt{-2 \log{X}} \cos{2\pi Y} \\
Z_2 &= \sqrt{-2 \log{X}} \sin{2\pi Y}
\end{align}

で定義されるZ1Z2 は、平均0、分散1の標準ガウス分布N(0,1)に従う互いに独立な確率変数となる。一様分布に従うX 及びY からガウス分布に従うZ1Z2 を与えるこの変換をボックス=ミュラー変換という。また、このガウス分布に従う確率変数を生成させる方法のことをボックス=ミュラー法という。 ボックス=ミュラー法によって、比較的生成が容易な一様分布に従う乱数から、応用上、重要なガウス分布に従う乱数を生成させることができる。

発想[編集]

2次元の標準ガウス分布に従う(Z1Z2)において、2変数が互いに独立であれば、結合確率密度関数


f(z_1,z_2) = \frac{1}{2\pi}e^{-\frac{z_1^{\, 2} + z_2^{\, 2}}{2} }

は、円周上で定数値を与えることから、偏角


\Theta = \arctan{\frac{Z_2}{Z_1}}

は(0, 2π)上で、一様分布をなす。一方、2次元ベクトル(Z1Z2)の大きさの2乗


R^2= Z_1^{\, 2} + Z_2^{\, 2}

は自由度2のカイ二乗分布に従う。ここで、カイ二乗分布の性質からe-R2/2は、(0, 1)上の一様分布となる。

これらのことから、逆に(0, 1)上で一様分布する2つの独立な確率変数XY により、


\begin{align}
\Theta &= 2 \pi Y \\
R^2 &= - 2\log{X}
\end{align}

とすれば、


\begin{align}
Z_1 &= R \cos{\Theta} \\
Z_2 &= R \sin{\Theta}
\end{align}

で定義される確率変数Z1Z2 は標準ガウス分布N(0,1)に従うこととなる。

証明[編集]

ボックス=ミュラー変換が標準ガウス分布を与えることは、特性関数を調べることで確認できる。実際、Z1 については、その特性関数は、


\Phi_{Z_1}(\xi)= \langle e^{i\xi Z_1} \rangle
= \int_0^1 \int_0^1 e^{i \xi \sqrt{-2 \log{x}} \cos{2\pi y}}dxdy

であり、変数変換


x = e^{ -\frac{r^2}{2} }, \, y = \frac{\theta}{2\pi}, \,
 dxdy=|J|drd\theta = \frac{r}{2\pi} e^{- \frac{r^2}{2} } drd\theta

によって、


\Phi_{Z_1}(\xi)
 = \frac{1}{2\pi} \int_0^{\infty} \int_0^{2\pi}
 e^{i \xi r \cos{\theta}-\frac{r^2}{2} } r dr d\theta

となるが、さらに変数変換


z=r \cos{\theta}, \, w=r \sin{\theta}, \, dzdw=|J|dr d \theta= r dr d \theta

を行えば、


\begin{align}
\Phi_{Z_1}(\xi)
&= \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}
 e^{i \xi z -\frac{z^2+w^2}{2} }  dz dw \\
&=e^{-\frac{\xi^2}{2} } \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-\frac{(z-i \xi)^2}{2} }  dz 
\int_{-\infty}^{\infty}  e^{-\frac{w^2}{2}}  dw \\
&=e^{-\frac{\xi^2}{2}}
\end{align}

を得る。これは、標準ガウス分布N(0,1)の特性関数にほかならない。

参考文献[編集]

原論文
参考書籍

関連項目[編集]