ブラックホールの熱力学

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動: 案内検索

物理学において、ブラックホール熱力学(ブラックホールねつりきがく、: black hole thermodynamics)は、ブラックホール事象の地平線の存在を含む熱力学の法則を探す研究分野である。黒体輻射 (black body radiation) の統計力学の研究が量子力学の到来を促したのと同じように、ブラックホールの統計力学を理解しようとする努力は、量子重力理論の理解に深い影響を与えてきており、ホログラフィック原理の定式化を導いた[1]

2つのブラックホールが合体するところを人工的に描いた図、この過程で熱力学の法則が確立されていく。

ブラックホール[編集]

熱力学第二法則を満たす唯一の方法は、ブラックホールエントロピーを持つことを認めることである。ブラックホールがエントロピーを持っていなければ、ブラックホールに何らかの質量を持ったものを投げ込むことで、第二法則を破ることが可能となってしまう。対象を飲み込むことで失われるエントロピーの減少を、ブラックホールのエントロピーの増加のほうが上まわる。

スティーブン・ホーキング (Stephen Hawking) によって証明された定理を根幹として、ヤコブ・ベッケンシュタイン (Jacob Bekenstein) は、事象の地平線 (event horizon) の面積をプランク面積で割った値にブラックホールのエントロピーは比例するであろうと予想した。ベッケンシュタインは、比例定数は (1/2\cdot\ln{2})/4\pi となり、この値に正確に一致しない場合でも、この値に非常に近い値となるであろうと示唆した。翌年、ホーキングはブラックホールが熱的な輻射、ホーキング輻射 (Hawking radiation) をしていることを示し[2][3]、これに対応する特定の温度(ホーキング温度)を持っていることを示した[4][5]。エネルギーと温度とエントロピーの熱力学の関係を使い、ホーキングはベッケンシュタインの予想を確かめ、比例定数を1/4と確定することができた[6]

S_{\text{BH}} = \frac{kA}{4\ell_{\mathrm{P}}^2}

ここでAは事象の地平線の表面積4\pi R^2であり、kボルツマン定数\ell_{\mathrm{P}}=\sqrt{G\hbar / c^3}プランク長である。この式はしばしばベッケンシュタイン・ホーキングの公式 (Bekenstein–Hawking formula) と呼ばれる。添字のBHは、「ブラックホール」あるいは「ベッケンシュタイン・ホーキング」を意味する。ブラックホールのエントロピーは、事象の地平線の面積Aに比例する。ブラックホールのエントロピーがベッケンシュタイン境界(Bekenstein bound)によって得られる最大エントロピーでもある事実は、ホログラフィック原理 (holographic principle) を導いた主な要因である[1]

ホーキングの計算はブラックホールのエントロピーに更なる熱力学的根拠を与えたが、1995年まで誰も統計力学を基礎としたブラックホールのエントロピー(数多くのマイクロステートのエントロピーと関係している)の制御された計算を行うことができなかった。実際、いわゆる「ブラックホールノーヘア定理 (No hair theorem)」[7] は、ブラックホールが単一のマイクロステートしか持っていないことを示唆しているように見える。1995年にアンドリュー・ストロミンジャー英語版 (Andrew Strominger) とカムラン・ヴァッファ (Cumrun Vafa) が、Dブレーンを基礎とした方法を使い、弦理論において超対称性を持つブラックホールの正しいベッケンシュタイン・ホーキング・エントロピーを計算した[8]ことによってこの状況は変化した。その後、他の臨界ブラックホール英語版 (extremal black hole) や近臨界ブラックホール英語版 (near-extremal black hole) の多くのクラスに対して同様の計算が行われ、結果は常にベッケンシュタイン=ホーキングの公式に一致した。しかし、臨界ブラックホールからは一番遠いと思われるシュバルツシルドブラックホール (Schwarzschild black hole) に対して、マクロとミクロステートの関係について弦理論の観点からの評価が期待されている。様々な研究が進行中であるが、解明はされていない。

ループ量子重力理論 (LQG)[9]では、マイクロステートを幾何学的に解釈することが可能である。ループ量子重力理論は、事象の地平線を量子幾何学的に解釈し、エントロピーの有限性と事象の地平線の面積の比例性を幾何学的に説明する[10][11]スピンフォーム英語版と呼ばれる量子論の共変的定式化から、エネルギーと面積(第一法則)の関係式やウンルー温度 (Unruh temperature) やホーキングエントロピーの分布を導出することを可能としている[12]。計算は力学的地平線英語版の考え方を使い、非臨界ブラックホールの場合も計算されている。量子ループ重力理論の観点から、ベッケンシュタイン・ホーキング・エントロピーの計算についても様々な議論がある。

ブラックホールの力学法則[編集]

4つのブラックホールの力学法則は、ブラックホールが満たすと考えられている物理的性質である。熱力学の法則に似たこれらの法則は、ブランドン・カーター英語版 (Brandon Carter)、スティーブン・ホーキングジェームズ・バーディーン英語版 (James Bardeen) によって発見された。

法則の記述[編集]

ブラックホールの力学は幾何学単位系 (geometrized units) で表現される。

第零法則[編集]

停留 (stationary) ブラックホールでは、地平線は定数の表面重力英語版 (surface gravity) を持っている。

第一法則[編集]

停留ブラックホールを摂動すると、エネルギー変化は、以下の式のように表面積、角運動量、電荷の変化と関連する。

dE = \frac{\kappa}{8\pi}\,dA+\Omega\, dJ+\Phi\, dQ

ここでEエネルギー\displaystyle \kappa表面重力英語版Aは事象の地平線の面積、\Omega角速度J角運動量\Phi静電ポテンシャルQ電荷である。

第二法則[編集]

事象の地平線の面積は、弱エネルギー条件英語版を前提とすると、時間の非減少函数である。

\frac{dA}{dt} \geq 0.

この「法則」はブラックホールが輻射するというホーキングの発見によって取って代わられた。ホーキング輻射によって、ブラックホールの質量と地平線の面積は時間と共に減少する。

第三法則[編集]

表面重力がゼロであるブラックホールは存在し得ない。\displaystyle \kappa = 0 へは到達できない。

法則についての議論[編集]

第零法則[編集]

第零法則は、熱平衡にある物体のあらゆる場所で温度が一定であることを述べている熱力学の第零法則と類似している。このことは表面重力が温度と類似していることを示唆している。正規化された系の熱平衡状態の定数Tは、停留ブラックホールの地平線上の定数\displaystyle \kappaに類似している。

第一法則[編集]

左辺のdEは(質量に比例した)エネルギーの変化分である。右辺の第一項は直ちには物理的な意味が明確でないが、第二、第三項は回転と電磁気学によるエネルギーの変化を表している。類似して、熱力学第一法則エネルギー保存則を記述しており、右辺にT dSを含んでいる。


第二法則[編集]

第二法則はホーキングの面積定理の記述である。類似して、熱力学第二法則は、自発的過程における孤立した系のエントロピーの変化は 0 か正であることを述べており、このことはエントロピーとブラックホールの地平線の面積との関係を示唆している。しかしながら、このバージョンは、ブラックホールに物質を投げ込むことでエントロピーを減少させ、ブラックホールはエントロピーを失うことで、熱力学の第二法則を破る。そのため、一般化された第二法則では、

[全エントロピー] = [ブラックホールのエントロピー] + [外側のエントロピー]

と考える。

第三法則[編集]

臨界ブラックホール英語版(Extremal black hole)[13]は、表面重力がゼロである。\displaystyle \kappaをゼロとすることはできないということは、絶対零度の系のエントロピーは定数として定義できることを述べている熱力学第三法則と類似している。これは,絶対零度の系が基底状態にあるからである。さらに、ΔS は絶対零度でゼロとなるが、S 自身も少なくとも完全結晶ではゼロとなる。これらの熱力学法則を破る評価実験は全く知られていない。

法則の解釈[編集]

4つのブラックホールの力学法則は、少なくともある程度の増倍定数までは、ブラックホールの表面重力と温度やエントロピーを持つ事象の地平面の面積とを同一であると見なすべきであることを示唆している。古典的にブラックホールを考えると、温度は零度であり、ノーヘア定理からエントロピーはゼロであり[7]、ブラックホールの力学は比喩のままである。しかしながら、量子力学的効果を考慮すると、ブラックホールは熱放射ホーキング輻射)を放ち、その温度は

T_{\text{H}} = \frac{\kappa}{2\pi}

である。ブラックホール力学の第一法則より、この式がベッケンシュタイン・ホーキングのエントロピーの増倍定数

S_{\text{BH}} = \frac{A}{4}

を決定する。

ブラックホールを超えて[編集]

ホーキングとベージ (Page) は、ブラックホール熱力学をブラックホールよりも一般的化でき、宇宙論の事象の地平線英語版はエントロピーと温度を持っていることを示した。

さらに根本的に、トホーフト (Gerardus 't Hooft) とサスカインド (Leonard Susskind) はブラックホール熱力学の法則を使い、自然界の一般的なホログラフィック原理を議論している。この議論は重力と量子力学の整合性を持つ理論はより低い次元にあるべきであるとしている。未だに完全には理解されてはいないが、ホログラフィック原理はAdS/CFT対応[14]のような理論の中心的な考え方となっている。

脚注[編集]

  1. ^ a b Bousso, Raphael (2002). “The Holographic Principle”. Reviews of Modern Physics 74 (3): 825–874. arXiv:hep-th/0203101. Bibcode 2002RvMP...74..825B. doi:10.1103/RevModPhys.74.825. 
  2. ^ "First Observation of Hawking Radiation" from the Technology Review
  3. ^ Matson, John (Oct 1, 2010). “Artificial event horizon emits laboratory analogue to theoretical black hole radiation”. Sci. Am. http://www.scientificamerican.com/article.cfm?id=hawking-radiation. 
  4. ^ Charlie Rose: A conversation with Dr. Stephen Hawking & Lucy Hawking
  5. ^ A Brief History of Time, Stephen Hawking, Bantam Books, 1988.
  6. ^ Majumdar, Parthasarathi (1998). “Black Hole Entropy and Quantum Gravity”. ArXiv: General Relativity and Quantum Cosmology 73: 147. arXiv:gr-qc/9807045. Bibcode 1999InJPB..73..147M. 
  7. ^ a b Bhattacharya, Sourav (2007). “Black-Hole No-Hair Theorems for a Positive Cosmological Constant”. Physical Review Letters 99 (20). arXiv:gr-qc/0702006. Bibcode 2007PhRvL..99t1101B. doi:10.1103/PhysRevLett.99.201101. 
  8. ^ Strominger, A.; Vafa, C. (1996). “Microscopic origin of the Bekenstein-Hawking entropy”. Physics Letters B 379: 99. arXiv:hep-th/9601029. Bibcode 1996PhLB..379...99S. doi:10.1016/0370-2693(96)00345-0.  編集
  9. ^ en:List of loop quantum gravity researchersを参照
  10. ^ Rovelli, Carlo (1996). “Black Hole Entropy from Loop Quantum Gravity”. Physical Review Letters 77 (16): 3288–3291. arXiv:gr-qc/9603063. Bibcode 1996PhRvL..77.3288R. doi:10.1103/PhysRevLett.77.3288. 
  11. ^ Ashtekar, Abhay; Baez, John; Corichi, Alejandro; Krasnov, Kirill (1998). “Quantum Geometry and Black Hole Entropy”. Physical Review Letters 80 (5): 904–907. arXiv:gr-qc/9710007. Bibcode 1998PhRvL..80..904A. doi:10.1103/PhysRevLett.80.904. 
  12. ^ Bianchi, Eugenio (2012). Entropy of Non-Extremal Black Holes from Loop Gravity. 1204. pp. 5122. arXiv:gr-qc/1204.5122. Bibcode 2012arXiv1204.5122B. 
  13. ^ Kallosh, Renata (1992). “Supersymmetry as a cosmic censor”. Physical Review D 46 (12): 5278–5302. arXiv:hep-th/9205027. Bibcode 1992PhRvD..46.5278K. doi:10.1103/PhysRevD.46.5278. 
  14. ^ For an authoritative review, see Ofer Aharony, Steven S. Gubser, Juan Maldacena, Hirosi Ooguri and Yaron Oz (2000). “Large N field theories, string theory and gravity”. Physics Reports 323 (3–4): 183–386. arXiv:hep-th/9905111. Bibcode 1999PhR...323..183A. doi:10.1016/S0370-1573(99)00083-6.  (Shorter lectures by Maldacena, based on that review.

参考文献[編集]

関連項目[編集]

外部リンク[編集]