ジェネレータ (プログラミング)

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動: 案内検索

ジェネレータは、プログラムにおいて、数列の各要素の値などを次々と生成(ジェネレート)し他の手続きに渡す、という機能を持っている手続きである。値を渡す方法としては、コールバックのようにして他の手続きを呼ぶものもあれば、呼び出される度に次々と異なる値を返す関数であることもある。

性質[編集]

「呼び出される度に次々と異なる値を返す関数」である場合は、参照透過ではない。イテレータは、コンテナに含まれる値ひとつひとつに対して走るジェネレータの一種である。ジェネレータの実装としてはコルーチンcall/ccマルチスレッドを使う方法が考えられる。また、言語によって詳細が異なるものを「ジェネレータ」と呼んでいる。擬似乱数発生器は、ジェネレータの一例である。

なおyieldというキーワードを使っていればジェネレータ、等といった短絡的な考えをする者がいるようだが間違いである。

歴史[編集]

CLU(1975年初出)の歴史を記した "A History of CLU" には、「Iterators were inspired by a construct in Alphard called a "generator"」((CLUの)イテレータはAlphard(en:Alphard (programming language))のジェネレータと呼ばれる構成要素に影響を受けた)とある[1]。AlphardのジェネレータはIPL-Vに由来する。IPL-Vにおけるジェネレータは、関数プログラミングにおける代表的な高階関数のひとつであるmap関数に似た働きをするもので、リストの各要素に適用するための手続きと、リストを受け取って、各要素にその手続きを適用したリストを生成する。

他に、IconPython[2]JavaScript[3]にジェネレータと呼ばれるものがある(イテレータも参照)。

[編集]

Python[編集]

Pythonでは、関数定義の中にyield文があると、その関数定義は通常の関数を定義するのではなく、一種のコルーチンの記述のようになる。yield文を含む関数は、イテレータと同じインタフェースを持つ呼び出し可能オブジェクトを返す関数になる。ジェネレータの語は、「yield文を含む関数定義により定義された関数」と、それが返す「イテレータと同じインタフェースを持つ呼び出し可能オブジェクト」を、はっきりと区別せずに使われているが、ここでは、前者をジェネレータ、後者をイテレータと呼ぶ。

このイテレータは、ジェネレータの定義中の各yield文の所まで実行した状態を保存するスタックフレームを保持するオブジェクトであると考えることができる。イテレータのnext()が呼び出されると、Pythonは保存されたフレームを復帰し、次のyield文に到達するまで実行する。yield文の実行によりフレームは再び保存され、yieldの引数の値がnext()の呼び出し元に返される。

def countfrom(n):
    while True:
        yield n
        n += 1
 
# Example use: 10 から 20 までの整数を表示する。
 
for i in countfrom(10):
    if i <= 20:
        print i
    else:
        break
 
# もう一つのジェネレータ。必要に応じて素数をいくらでも作成する
 
def primes():
    n = 2
    p = []
    while True:
        if not any( n % f == 0 for f in p ):
            yield n
            p.append( n )
        n += 1
 
>>> f = primes()
>>> f.next()
2
>>> f.next()
3
>>> f.next()
5
>>> f.next()
7

上記の例は Python 2.5 以上か、NumPy モジュールの any() 関数を使用できる環境で動作する。

Scheme[編集]

Schemeにおいて、継続を使って実装したサンプルがある[4]

参考文献[編集]

  1. ^ Liskov, Barbara (1992年4月). “A History of CLU (pdf)”. 2008年3月8日閲覧。
  2. ^ Python Enhancement Proposals PEP 255: Simple Generators, PEP 289: Generator Expressions, PEP 342: Coroutines via Enhanced Generators
  3. ^ New In JavaScript 1.7”. 2006年10月10日閲覧。
  4. ^ Kiselyov, Oleg (2004年1月). “General ways to traverse collections in Scheme”. 2008年3月8日閲覧。
  • Stephan Murer, Stephen Omohundro, David Stoutamire and Clemens Szyperski: Iteration abstraction in Sather. ACM Transactions on Programming Languages and Systems, 18(1):1-15 (1996) [1]