クロード・シャノン

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動: 案内検索
クロード・シャノン
人物情報
生誕 クロード・エルウッド・シャノン
1916年4月30日
アメリカ合衆国の旗 アメリカ合衆国ミシガン州ペトスキー
死没 2001年2月24日(満84歳没)
アメリカ合衆国の旗 アメリカ合衆国マサチューセッツ州メドフォード
国籍 アメリカ合衆国
出身校 ミシガン大学
マサチューセッツ工科大学
学問
研究分野 数学および電子工学
研究機関 ベル研究所
マサチューセッツ工科大学
プリンストン高等研究所
博士課程
指導教員
フランク・ヒッチコック
博士課程
指導学生
アイバン・サザランド
バート・サザーランド
主な業績 情報理論
シャノン符号化
シャノン=ハートレーの定理
標本化定理
伝送路符号化
シャノンのスイッチングゲーム
シャノン数
シャノン指数
シャノンの情報源符号化定理
シャノンの展開定理
シャノン=ウィーバーのコミュニケーションモデル
ホイタッカー=シャノンの補間公式
主な受賞歴 IEEE栄誉賞(1966年)
京都賞基礎科学部門(1985年)
Harvey Prize(1972年)
プロジェクト:人物伝
テンプレートを表示

クロード・エルウッド・シャノンClaude Elwood Shannon, 1916年4月30日 - 2001年2月24日)はアメリカ合衆国電気工学者、数学者。20世紀科学史における、最も影響を与えた科学者の一人である。

情報理論の考案者であり、情報理論の父と呼ばれた。情報、通信、暗号、データ圧縮、符号化など今日の情報社会に必須の分野の先駆的研究を残した。アラン・チューリングジョン・フォン・ノイマンらとともに今日のコンピュータ技術の基礎を作り上げた人物として、しばしば挙げられる。

業績[編集]

デジタル回路設計の創始者[編集]

1937年のマサチューセッツ工科大学での修士論文 "A Symbolic Analysis of Relay and Switching Circuits"[1]において、電気回路(ないし電子回路)が論理演算に対応することを示した。すなわち、スイッチのオン・オフを真理値に対応させると、スイッチの直列接続はANDに、並列接続はORに対応することを示し、論理演算がスイッチング回路で実行できることを示した。これは、デジタル回路論理回路の概念の確立であり、それ以前の電話交換機などが職人の経験則によって設計されていたものを一掃し、数学的な理論に基づいて設計が行えるようになった。どんなに複雑な回路でも、理論に基づき扱えるということはコンピュータの実現に向けたとても大きなステップの一つだったと言える。

ハーバード大学教授のハワード・ガードナーHoward Gardner)は、この論文について「たぶん今世紀で最も重要で、かつ最も有名な修士論文」と評した。ただし、わずかな時間差であるが、中嶋章による発表の方が先行しており(論理回路#歴史を参照)、独立な成果か否かは不明とされている。

情報理論の考案[編集]

1948年ベル研究所在勤中に論文「通信の数学的理論」[2]を発表し、それまで曖昧な概念だった「情報」(information)について数量的に扱えるように定義し、情報についての理論(情報理論)という新たな数学的理論を創始した。

翌年ウォーレン・ウィーバーWarren Weaver)の解説を付けて出版された同名(ただし“A”が“The”に変わっている)の書籍『通信の数学的理論』[3]で、シャノンは通信におけるさまざまな基本問題を取り扱うために、情報の量(情報量)を事象の起こる確率によって定義し、連続して起こる確率事象の情報量の期待値(平均情報量)であるエントロピーの概念を導入した(エントロピー#情報理論におけるエントロピーとの関係も参照)。エントロピーの語を提案したのはフォン・ノイマンとも言われているが、シャノンは否定している[4]。また、情報量の単位としてビットを初めて使用した[5]

そして、ノイズ(雑音)がない通信路で効率よく情報を伝送するための符号化(「情報源符号化定理」または「シャノンの第一基本定理」)と、ノイズがある通信路で正確に情報を伝送するための誤り訂正符号(「通信路符号化定理」または「シャノンの第二基本定理」)という現在のデータ伝送での最も重要な概念を導入した。これらはそれぞれデータ圧縮の分野と誤り訂正符号の分野の基礎理論となっている。通信路符号化定理は単一通信路あたりの伝送容量に上限があることを意味する。

これらの定理は現在、携帯電話などでの通信技術の基礎理論となっており、その後の情報革命と呼ばれる情報技術の急速な発展に結びついている。

シャノンの定理[編集]

C = W \log_{2}\left( 1 + \frac{S}{N} \right)
(ここでC:ビット毎秒、W:帯域幅、S:信号電力、N:ノイズ電力)

標本化定理の証明[編集]

アナログデータをデジタルデータへと変換する時、どの程度の間隔でサンプリングすればよいかを定量的に表す標本化定理を1949年の論文"Communication in the Presence of Noise"の中で証明した。標本化定理は1928年にハリー・ナイキストによって予想されており、またシャノンの証明発表の同時期に証明をした人物が複数存在するが、シャノンのものが最も有名であり、英語圏では「ナイキスト=シャノンの標本化定理」という名前で知られている(詳しくは標本化定理を参照)。標本化定理は、現在、コンパクトディスクを始めとしたあらゆるデジタイズ技術の基礎定理となっている。

暗号理論に関する先駆的成果[編集]

1949年に論文「秘匿系の通信理論」[6]を発表し、ワンタイムパッドを利用すると情報理論的に解読不可能な暗号が構成でき、情報理論的に解読不可能な暗号はワンタイムパッドの利用に限ることを数学的に証明した(現代の暗号研究で考察されている計算量的に安全な暗号ではなく、情報理論的に安全な暗号を考察している点に注意)。

シャノンはこの論文で、暗号のアルゴリズム(暗号化方法)が知られてもなお安全である暗号(ケルクホフスの原理参照)について考察しており、はじめて暗号について数学的分析を行った。

シャノンのチェスプログラム[編集]

1949年にコンピュータチェスに関する画期的な論文「チェスのためのコンピュータプログラミング」[7]を発表し、力ずくの総当たりでなくコンピュータがチェスをする方法を示した。コンピュータがどの駒をどう移動するかを決定するのにシャノンが用いた方法が、評価関数に基づいたミニマックス法だった。評価関数は、駒の価値や、駒の位置の価値、移動の価値などをすべて数値化して「局面」の価値を評価するものであり、シャノンはその後のゲーム展開を探索木Search tree)に分類してどの着手がもっとも良いかを探索する方法について考察している。この論文はコンピュータゲームでのコンピュータの思考プログラム設計の原典となった。

受賞歴[編集]

脚注[編集]

  1. ^ Claude Shannon, "A Symbolic Analysis of Relay and Switching Circuits", Massachusetts Institute of Technology, Dept. of Electrical Engineering, 1940.
  2. ^ Claude Shannon, "A Mathematical Theory of Communication", Bell System Technical Journal, vol. 27, pp. 379–423 and 623–656, 1948. オンライン版, PDF
  3. ^ Claude Shannon and Warren Weaver, The Mathematical Theory of Communication, The University of Illinois Press, 1949. ISBN 0-252-72548-4.
  4. ^ 出典は情報量#歴史を参照
  5. ^ 論文の中で、用語 "bit" を考案したのはジョン・テューキーだとしている。ISOおよびJISでは単位としてビットの代わりにシャノン(Sh)を使うことにしているが、現在のところあまり一般的ではない。
  6. ^ Claude Shannon, "Communication Theory of Secrecy Systems", Bell System Technical Journal, vol. 28, pp. 656–715, 1949.
  7. ^ Claude Shannon, "Programming a Computer for Playing Chess", Philosophical Magazine, ser. 7, vol. 41, no. 314, 1950.

著書[編集]

  • コミュニケーションの数学的理論、C.E.シャノン、W.ウィーヴァー、(The Mathematical theory of communication、E.Shannon、Warren Weaver、(C)1967 by The Unibersity of Illinois Press.)訳者:長谷川淳、井上光洋、明治図書出版(1969年)。
  • 通信の数学的理論 、Warren Weaver, Claude Elwood Shannon, 植松 友彦 (翻訳) 、筑摩書房 (2009年8月10日) <ちくま学芸文庫>、ISBN 978-4480092229、価格1260円。

(上記の再翻訳、文庫版)。

関連項目[編集]

外部リンク[編集]