のこぎり波

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動: 案内検索

のこぎり波(日本語: {{{1}}}鋸歯状波(きょしじょうは)、英語: sawtooth wave)は、非正弦波的な基本的波形の一種で、波形の見た目がの歯のように見えることからそのように呼ばれる。

簡単に説明すれば、のこぎり波の波形は時間と共に上がっていき、急降下するということを繰り返す。もちろん、逆に徐々に下がっていって急上昇することを繰り返すのこぎり波もある。後者を「逆のこぎり波(英語: reverse sawtooth wave、inverse sawtooth wave)」と呼ぶ。どちらの波形であってもパラメータを調整すると同じ音に聞こえる。

帯域制限のあるのこぎり波を時間領域(上)と周波数領域(下)で表したもの。基本周波数は 220 Hz (A2)
順に 440 Hz, 880 Hz, 1760 Hzで、それぞれ帯域制限のあり/なし

この音声や映像がうまく視聴できない場合は、Help:音声・動画の再生をご覧ください。

次の時間 t についての床関数に基づいた区分線形関数は、周期が 1 ののこぎり波の例である。

x(t) = t - \operatorname{floor}(t)

より汎用的な形式として、次の式は振幅が -1 から 1 で、周期が a ののこぎり波を表している。

x(t) = 2 \left( {t \over a} - \operatorname{floor} \left ( {t \over a} + {1 \over 2} \right ) \right )

こののこぎり波関数は正弦関数と同じ位相である。

のこぎり波を音として聞いてみると、猛々しくハッキリしていて、周波数成分としては基本周波数の偶数倍音と奇数倍音の両方が含まれている。全ての整数倍音を含んでいるため、減算方式シンセサイザーで、他の音を合成するベースとして使うのに便利である。

のこぎり波は正弦波を合成することで近似することができる。のこぎり波に収束するフーリエ級数を以下に示す。

x_\mathrm{sawtooth}(t) = \frac {2}{\pi}\sum_{k=1}^{\infin} \frac {\sin (kt)}{k}

デジタルシンセサイザーの場合、この級数の k について、ナイキスト周波数サンプリング周波数の半分)未満の倍音までを考慮すればよい。この合成は高速フーリエ変換を使って計算するのが効率的である。波形をデジタル的にではなく帯域制限のない形で y = x - floor(x) のように生成した場合、それには無限の倍音が含まれており、デジタイズの際にエイリアシング歪みが発生する。

応用[編集]

倍音を徐々に追加してのこぎり波を形成するアニメーション

関連項目[編集]

ウィキポータル 関連ポータルのリンク